
Unit 1

.NET Framework & Language Constructs

Introduction to .NET Framework

 .NET is a software framework which is designed and developed by
Microsoft.

 first version of the .Net framework was 1.0 which came in the year 2002.

 and the current version is 4.7.1.

 In easy words, it is a virtual machine for compiling and executing programs
written in different languages like C#, VB.Net etc.

 used to develop Windows Form-based applications, Web-based
applications, and Web services.

 VB.Net and C# being the most common ones.

 It is used to build applications for Windows, phone, web, etc.

 .NET is not a language (Runtime and a library for writing and executing
written programs in any compliant language)

Introduction to .NET Framework

 .NET Framework supports more than 60 programming
languages in which 11 are designed and developed by
Microsoft,

 Some of them includes:
◦ C#.NET

◦ VB.NET

◦ C++.NET

◦ J#.NET

◦ F#.NET

◦ JSCRIPT.NET

◦ WINDOWS POWERSHELL

Base Class Library

Common Language Specification

Common Language Runtime

ADO.NET: Data and XML

VB VC++ VC#

V
is

u
a

l S
tu

d
io

.N
E

T
ASP.NET: Web Services

and Web Forms

JScript …

Windows

Forms

Framework, Languages, And Tools

The .NET Framework
.NET Framework Services

 Common Language Runtime
 Windows® Forms
 ASP.NET
◦Web Forms
◦Web Services

 ADO.NET, evolution of ADO
 Visual Studio.NET

Common Language Runtime (CLR)

CLR works like a virtual machine in executing all languages.

All .NET languages must obey the rules and standards imposed
by CLR. Examples:

◦ Object declaration, creation and use

◦ Data Types, language libraries

◦ Error and exception handling

◦ Interactive Development Environment (IDE)

Common Language Runtime(CLR)

 Development
◦ Mixed language applications

 Common Language Specification (CLS)

 Common Type System (CTS)

 Standard class framework

 Automatic memory management

◦ Consistent error handling and safer execution

◦ Potentially multi-platform

 Deployment
◦ Removal of registration dependency

◦ Safety – fewer versioning problems

Common Language Runtime
Multiple Language Support

• CTS is a rich type system built into the CLR
– Implements various types (int, double, etc)

– And operations on those types

• CLS is a set of specifications that language and library
designers need to follow
– This will ensure interoperability between languages

Compilation and Execution of .NET Application

Code in VB.NET Code in C#
Code in another
.NET Language

VB.NET compiler C# compiler
Appropriate

Compiler

IL(Intermediate
Language) code

CLR just-in-time
execution

Compilation and Execution of .NET Application

 Any code written in any .NET complaint languages when compiled,
converts into MSIL (Microsoft Intermediate Language) code in form of an
assembly through CLS, CTS.

 IL is the language that CLR can understand.

 On execution, this IL is converted into binary code(machine code) by
CLR’s just in time compiler (JIT) and these assemblies or DLL are loaded
into the memory.

 Compilation can be done with Debug or Release configuration. The
difference between these two is that in the debug configuration, only an
assembly is generated without optimization. However, in release
complete optimization is performed without debug symbols.

Basic Languages constructs

 Data Types

 Variables

 Conditional Statements

 Looping Statements

 Array

 Functions

 Class, Object, Methods, Properties

 Inheritance, Polymorphism

Lets Get Started

 Before we begin, download visual studio 2019

 Here is the download link

 https://visualstudio.microsoft.com/downloads/

https://visualstudio.microsoft.com/downloads/

C# Overview

 C# is general-purpose, object-oriented programming language
developed by Microsoft.

 C# is designed for Common Language Infrastructure (CLI), which
consists of the executable code and runtime environment that
allows use of various high-level languages on different computer
platforms and architectures.

 Reasons - C# a widely used professional language:
◦ It is object oriented & structured language

◦ It is component oriented.

◦ It is easy to learn & produces efficient programs.

◦ It can be compiled on a variety of computer platforms.

◦ a part of .Net Framework.

Strong Programming Features of C#

 Boolean Conditions

 Automatic Garbage Collection

 Standard Library

 Assembly Versioning

 Properties and Events

 Delegates and Events Management

 Easy-to-use Generics

 Indexers

 Conditional Compilation

 Simple Multithreading

 LINQ and Lambda Expressions

 Integration with Windows

C# Program Structure

namespace ConsoleApplication1

{

class Program

{

static void Main(string[] args)

{

}

}

}

C# - Program.cs (First Program in C#)

namespace ConsoleApplication1

{

class Program

{

static void Main(string[] args)

{

}

}

}

Data Types

 int

 short

 long

 char

 string

 bool

 float

 decimal

 double

 object

float f1 = 10.31f ;
decimal d1 = 23.34m ;
string name = “Your Name” ;

int x = 10;
object obj = x; // boxing, implicit
int y = (int) obj ; //unboxing, explicit

C# - Program.cs (First Program in C#)

namespace ConsoleApplication1

{

class Program

{

static void Main(string[] args)

{

Console.WriteLine(“My First Program in C#”);

Console.ReadKey();

}

}

}

Example

Operator

 Arithmetic :

◦ +, -, *, /, %, ++, --

 Comparison :

◦ >, <, >=, <=, ==, ===, !=

 Logical :

◦ && (AND), || (OR), ! (NOT)

 Assignment :

◦ =, +=, -=, *=, /=, %=

 Conditional or Ternary - ? :
20

Arithmetic
Operator

21

Operator Description Example Result

+ Addition x=2 4

y=2

x+y

- Subtraction x=5 3

y=2

x-y

* Multiplication x=5 20

y=4

x*y

/ Division 15/5 3

5/2 2,5

% Modulus (division
remainder)

5%2 1

10%8 2

10%2 0

++ Increment x=5 x=6

x++

-- Decrement x=5 x=4

x--

Assignment
Operator

22

Operator Example Is The Same As

= x=y x=y

+= x+=y x=x+y

-= x-=y x=x-y

= x=y x=x*y

/= x/=y x=x/y

%= x%=y x=x%y

Comparison
Operator

23

Operator Description Example

== is equal to 5==8 returns false

=== is equal to (checks for both
value and type)

x=5

y="5"

x==y returns true

x===y returns false

!= is not equal 5!=8 returns true

> is greater than 5>8 returns false

< is less than 5<8 returns true

>= is greater than or equal to 5>=8 returns false

<= is less than or equal to 5<=8 returns true

Logical
Operator

24

Operator Description Example

&& and x=6

y=3

(x < 10 && y > 1) returns true

|| or x=6

y=3

(x==5 || y==5) returns false

! not x=6

y=3

!(x==y) returns true

Controlling Program Flow

 Conditions: Making Decisions – 2 Ways

◦ if … else statement

◦ Switchcase

25

Controlling Program Flow

 forms of if..else statement
◦ if statement
◦ if...else statement
◦ if...else if... statement.

 Syntax
◦ if(expression) {

statement(s) to be executed if true

}

26

27

Example
If - else

Controlling Program Flow

 switchcase

28

29

Example
switch case

Loop

 Used to perform an action repeatedly
till satisfied condition meets.

 3 Types of Loops
◦ While loop

◦ Do While loop

◦ For loop

 These loops have
◦ Initialization statement

◦ Condition statement

◦ Update (increment or decrement)

statement
30

While Loop

do while loop

31

 Syntax
for (initialize; condition; iteration) {

Statement(s) to be executed if test condition is true

}

 Ex

for (int i=1; i<=10; i++) {

Console.WriteLine(”Count is : ” + i);

}

Loop – For loop

32

Array & for each loop

Strings

 Used for storing and manipulating text

 A string variable contains zero or more characters within double quotes.

34

Functions

Function Overloading

Class & Object

 A class consists of data declarations plus functions that act on
the data.

◦ Normally the data is private

◦ The public functions (or methods) determine what clients can do with
the data.

 An instance of a class is called an object.

◦ Objects have identity and lifetime.

◦ Like variables of built-in types.

37
37

Encapsulation

 By default the class definition encapsulates, or hides, the data
inside it.

 Key concept of object oriented programming.

 The outside world can see and use the data only by calling the
build-in functions.

◦ Called “methods”

38
38

Class Members

 Methods and variables declared inside a class are called
members of that class.

◦ Member variables are called fields.

◦ Member functions are called methods.

 In order to be visible outside the class definition, a member
must be declared public.

39
39

Objects

 An instance of a class is called an object.

 You can create any number of instances of a given class.

◦ Each has its own identity and lifetime.

◦ Each has its own copy of the fields associated with the class.

 When you call a class method, you call it through a particular
object.

◦ The method sees the data associated with that object.

40
40

Creating a Class

Class - Properties

Class - Constructor

Task

Create a class “Employee” with following specs:

- Field Members : firstName, lastName, salary

- Properties : FirstName, LastName, Salary

- Methods : ShowFullName, IncrementSalary(double s)

- Constructor : Employee(__ , ___ , ___)

Now, create object of Employee(“Ram”, “Bahadur”, 20000)

- Show Employee Fullname & Salary

- Change FirstName to “Hari” & increment salary by 5000

- Show full name & salary

Inheritance

 New Classes called derived classes are created from existing classes
called base classes

public class Class A

{

}
public class Class B : A
{

}

Inheritance
Example

public class ParentClass

{
public ParentClass() {

Console.WriteLine(“Parent Constructor”);

}
public void Print() {

Console.WriteLine(“I’m a Parent Class.”);
}

}

public class ChildClass : ParentClass {
public ChildClass () {

Console.WriteLine(“Parent Constructor”);
}

}

Inheritance Example

class Program
{

static void Main(string[] args)
{

ChildClass cc= new ChildClass();
cc.Print();

}
}

Use base key word

public class ParentClass
{

public int x = 10;
public ParentClass()
{

Console.WriteLine(“Parent Constructor”);
}
public void Print() {

Console.WriteLine(“I’m a Parent Class.”);
}

}

Use base key word

public class ChildClass : ParentClass
{

public ChildClass() : base()
{

Console.WriteLine(“Child Constructor”);
base.Print();
Console.WriteLine(base.x);

}
}

Inheritance Example

class Program
{

static void Main(string[] args)
{

ChildClass cc= new ChildClass()
cc.Print();
Console.ReadKey();

}
}

Indexer
 An indexer allows an object to be indexed such as an array.
 When you define an indexer for a class, this class behaves

similar to a virtual array.
 You can then access the instance of this class using the array

access operator ([]).

element-type this[int index]
{

get { // return the value specified by index }
set { // set the value specified by index }

}

Indexer
Example

Indexer
Example

The sealed class
Sealed classes are used to restrict the inheritance feature of

object oriented programming. Once a class is defined as a
sealed class, the class cannot be inherited.

 In C#, the sealed modifier is used to define a class as sealed

sealed class SealedClass
{

}

Abstract Class

Classes can be declared as abstract by using keyword abstract.
Abstract classes are one of the essential behaviors provided by

.NET.
 If you like to make classes that only represent base classes, and

don’t want anyone to create objects of these class types, use
abstract class to implement such functionality.

Object of this class can be instantiated, but can make
derivations of this.

The derived class should implement the abstract class members.

Abstract Class

Abstract Class

Interface

 An interface is not a class. It is an entity that is defined by the keyword
Interface.

 By Convention, Interface Name starts with letter ‘I’
 has no implementation; just the declaration of the methods without the

body.
 a class can implement more than one interface but can only inherit from

one class.
 interfaces are used to implement multiple inheritance.

interface IFace
{

}

Partial Classes

 In C#, a class definition can be divided over multiple files.

◦ Helpful for large classes with many methods.

◦ Used by Microsoft in some cases to separate automatically generated
code from user written code.

 If class defintion is divided over multiple files, each part is
declared as a partial class.

59

Partial Classes
In file circ1.cs

partial class Circle

{

// Part of class defintion

...

}

In file circ2.cs

partial class Circle

{

// Another part of class definition

...

}

60

Exception Handling

 An exception is a problem that arises during the
execution of a program.

 A C# exception is a response to an exceptional
circumstance that arises while a program is running,
such as an attempt to divide by zero, Array Index Out of
Bounds, etc

 Exceptions provide a way to transfer control from one
part of a program to another.

 C# exception handling is built upon four
keywords: try, catch, finally, and throw.

61

Exception Handling

 try: A try block identifies a block of code for which particular
exceptions is activated. It is followed by one or more catch blocks.

 catch: A program catches an exception with an exception handler
at the place in a program where you want to handle the problem.
The catch keyword indicates the catching of an exception.

 finally: The finally block is used to execute a given set of
statements, whether an exception is thrown or not thrown.

 throw: A program throws an exception when a problem shows
up. This is done using a throw keyword.

62

Exception
Handling

Syntax

63

Exception Handling

 What will happen to this program?

 In which line, we encounter the error?

 Will this execute all statements?

 Can this program display the last 2 lines?

1. int a = 10;

2. int b = 0;

3. int c = a / b;

4. Console.WriteLine(c);

5. Console.WriteLine(“This is last line”);
64

Exception Handling

65

Delegate

 C# delegates are similar to pointers to functions, in C or C++.

 A delegate is a reference type variable that holds the reference
to a method. The reference can be changed at runtime.

 Delegates are especially used for implementing events and the
call-back methods.

 Syntax – Delegate Declaration :

delegate <return-type> <delegate_name> <params>

66

Delegate

 Delegate Declaration :

delegate <return-type> DelegateName> <arg_list>

 Object Creation :

DelegateName d = new DelegateName<function to which the
delegate points>

Invoking :

d<list of args that are to be passed to the functions>

67

Delegate - Ex

68

Collection Types

 Collection Types are specialized classes for data storage and
retrieval.

 These classes provide support for stacks, queues, lists, and hash
tables.

 Collection classes serve various purposes, such as allocating
memory dynamically to elements and accessing a list of items on
the basis of an index etc.

 Namespaces:
◦ System.Collection

◦ System.Collection.Generic

69

 System.Collection

◦ ArrayList, Hashtable, SortedList, Stack, Queue

 System.Collection.Generic

◦ generic collection is strongly typed (type safe), that you can
only put one type of object into it.

◦ This eliminates type mismatches at runtime.

◦ Another benefit of type safety is that performance is better

◦ Ex: List, Dictionary

70

Collection Types

Array List – System.Collections

71

List – System.Collection.Generic

72

Unit 2

Introduction to ASP.NET

1

ASP.NET

 ASP.NET is a web application framework designed and
developed by Microsoft.

 a subset of the .NET Framework and successor of the classic
ASP (Active Server Pages).

 With version 1.0 of the .NET Framework, it was first released in
January 2002.

 before the year 2002 for developing web applications and
services, there was Classic ASP.

.NET ASP.NET

.NET is a software development framework

aimed to develop Windows, Web and Server

based applications.

ASP.NET is a main tool that present in the

.NET Framework and aimed at simplifying

the creation of dynamic webpages.

Server side and client side application

development can be done using .NET

framework.

You can only develop server side web

applications using ASP.NET as it is integrated

with .NET framework.

Mainly used to make business applications

on the Windows platform.

It is used to make dynamic web pages and

websites using .NET languages.

Its programming can be done using any

language with CIL (Common Intermediate

Language) compiler.

Its programming can be done using any .NET

compliant language.

.NET Core

 .NET Core is a new version of .NET Framework

 general-purpose development platform maintained by Microsoft.

 It is a cross-platform framework that runs on Windows, macOS, and Linux

operating systems, used to build different types of applications such as

mobile, desktop, web, cloud, IoT, machine learning, microservices, game, etc.

 .NET Core is written from scratch to make it modular, lightweight, fast, and

cross-platform Framework.

 It includes the core features that are required to run a basic .NET Core app.

Other features are provided as NuGet packages, which you can add it in your

application as needed. In this way, the .NET Core application speed up the

performance, reduce the memory footprint and becomes easy to maintain.

.NET Core Characteristics

 Open-source Framework: .NET Core is an open-source framework

maintained by Microsoft and available on GitHub under MIT and Apache 2

licenses. It is a .NET Foundation project.

 Cross-platform: .NET Core runs on Windows, macOS, and Linux

operating systems. There are different runtime for each operating system

that executes the code and generates the same output.

 Consistent across Architectures: Execute the code with the same

behavior in different instruction set architectures, including x64, x86, and

ARM.

 Wide-range of Applications: Various types of applications can be

developed and run on .NET Core platform such as mobile, desktop, web,

cloud, IoT, machine learning, microservices, game, etc.

 Supports Multiple Languages: You can use C#, F#, and Visual Basic

programming languages to develop .NET Core applications. You can use your

favorite IDE, including Visual Studio 2017/2019, Visual Studio Code, Sublime Text,

Vim, etc.

 Modular Architecture: supports modular architecture approach using NuGet

packages for various features that can be added to the .NET Core project as

needed. Even the .NET Core library is provided as a NuGet package. The NuGet

package for the default .NET Core application model is Microsoft.NETCore.App. It

reduces the memory footprint, speeds up the performance, and easy to maintain.

 CLI Tools: .NET Core includes CLI tools (Command-line interface) for

development and continuous-integration.

 Flexible Deployment: .NET Core application can be deployed user-wide or

system-wide or with Docker Containers.

 Compatibility: Compatible with .NET Framework and Mono APIs by using .NET

Standard specification

.NET Core Version History

.NET Core Framework parts

 CLI Tools: A set of tooling for

development and deployment.

 Roslyn: Language compiler

for C# and Visual Basic

 CoreFX: Set of framework

libraries.

 CoreCLR: A JIT based CLR

(Command Language

Runtime).

Mono

9

 Mono is an example of a cross-platform framework available on
Windows, macOS, Linux, and more. It was first designed as an open
source implementation of the .NET Framework on Linux.

 Mono (like .NET) is tied heavily around the C# programming
language, known for its high level of portability.

 For example, the Unity game engine uses C# as a cross-platform way
of creating video games. This is in part due to the language's design.
C# can be turned into CIL (Common Intermediate Language), which
can either be compiled to native code (faster, less portable), or run
through a virtual machine (slower, more portable).

 Mono provides the means to compile, and run C# programs, similar
to the .NET Framework.

ASP.NET Web Forms

 a part of the ASP.NET web application framework and is included
with Visual Studio.

 you can use to create ASP.NET web applications, the others are
ASP.NET MVC, ASP.NET Web Pages, and ASP.NET Single Page
Applications.

 Web Forms are pages that your users request using their browser.
These pages can be written using a combination of HTML, client-
script, server controls, and server code.

 When users request a page, it is compiled and executed on the
server by the framework, and then the framework generates the
HTML markup that the browser can render.

10

ASP.NET Web Forms

 An ASP.NET Web Forms page presents information to the user in
any browser or client device.

 The Visual Studio (IDE) lets you drag and drop server controls to
lay out your Web Forms page. You can then easily set properties,
methods, and events for controls on the page or for the page
itself. These properties, methods, and events are used to define
the web page's behavior, look and feel, and so on

 Based on Microsoft ASP.NET technology, in which code that runs
on the server dynamically generates Web page output to the
browser or client device.

11

Features of ASP.NET Web Forms

 Server Controls- ASP.NET Web server controls are similar to familiar HTML

elements, such as buttons and text boxes. Other controls are calendar

controls, and controls that you can use to connect to data sources and

display data.

 Master Pages- ASP.NET master pages allow you to create a consistent

layout for the pages in your application. A single master page defines the

look and feel and standard behavior for all of the pages (or a group of

pages) in your application. You can then create individual content pages

along with the master page to render the web page.

 Working with Data- ASP.NET provides many options for storing, retrieving,

and displaying data in web page UI elements such as tables and text boxes

and drop-down lists.

12

Features of ASP.NET Web Forms

 Client Script and Client Frameworks - You can write client-script functionality

in ASP.NET Web Form pages to provide responsive user interface to users. You

can also use client script to make asynchronous calls to the Web server while a

page is running in the browser.

 Routing - URL routing allows you to configure an application to accept request

URL. A request URL is simply the URL a user enters into their browser to find a

page on your web site. You use routing to define URLs that are semantically

meaningful to users and that can help with search-engine optimization (SEO).

 State Management - ASP.NET Web Forms includes several options that help

you preserve data on both a per-page basis and an application-wide basis.

 Security - offer features to develop secure application from various

security threats.
13

Features of ASP.NET Web Forms

 Performance – offers performance related to page and server control
processing, state management, data access, application configuration and
loading, and efficient coding practices.

 Internationalization - enables you to create web pages that can obtain content
and other data based on the preferred language setting or localized resource for
the browser or based on the user's explicit choice of language. Content and
other data is referred to as resources and such data can be stored in resource
files or other sources.

 Debugging and Error Handling - diagnose problems that might arise in
application. Debugging and error handling are well so that applications compile
and run effectively.

 Deployment and Hosting- Visual Studio, ASP.NET, Azure, and IIS provide
tools that help you with the process of deploying and hosting your application

14

Let’s create first ASP.NET Web Forms Project
in Visual Studio 2017/2019

15

ASP.NET MVC

 ASP.NET MVC is an open source web development framework
from Microsoft that provides a Model View Controller
architecture.

 ASP.net MVC offers an alternative to ASP.net web forms for
building web applications.

 It is a part of the .Net platform for building, deploying and
running web apps.

 You can develop web apps and website with the help of HTML,
CSS, jQuery, Javascript, etc.

16

ASP.NET MVC Architecture

 MVC stands for Model, View, and Controller. MVC separates an
application into three components - Model, View, and Controller.

 Model: represents the shape of the data. A class in C# is used to
describe a model. Model objects store data retrieved from the
database. Model represents the data.

 View: View in MVC is a user interface. View display model data to the
user and also enables them to modify them. View in ASP.NET MVC is
HTML, CSS, and some special syntax (Razor syntax) that makes it easy
to communicate with the model and the controller.

 Controller: handles the user request. Typically, the user uses the view
and raises an HTTP request. Controller processes request and returns
the appropriate view as a response. Controller is the request handler.

17

ASP.NET MVC Architecture

18

Request Flow in MVC Architecture

19

The following figure illustrates the flow of the user's request in

ASP.NET MVC.

Let’s create first ASP.NET MVC Project
in Visual Studio 2017/2019

20

ASP.NET Web API

 ASP.NET Web API is a framework for building HTTP services that

can be accessed from any client including browsers and mobile

devices.

 It is an ideal platform for building RESTful applications on the .NET

Framework.

 It works more or less the same way as ASP.NET MVC web

application except that it sends data as a response instead of html

view.

 like a webservice or WCF service but the exception is that it only

supports HTTP protocol.
21

ASP.NET Web API

22

ASP.NET Web API Characteristics

 a framework for building HTTP services that can be accessed from
any client including browsers and mobile devices.

 ideal for building RESTful applications on the .NET Framework.

 The ASP.NET Web API is an extensible framework for building
HTTP based services that can be accessed in different applications
on different platforms such as web, windows, mobile etc.

 It works more or less the same way as ASP.NET MVC web
application except that it sends data as a response instead of html
view.

 like a webservice or WCF service but the exception is that it only
supports HTTP protocol.

23

ASP.NET Web API Project

You can create a Web API project in two ways.

 Web API with MVC Project

 Stand-alone Web API Project

24

ASP.NET Core

 new version of the ASP.NET web framework

 free, open-source, and cross-platform framework

 ASP.NET Core applications can run on Windows, Linux, and Mac.

So you don't need to build different apps for different platforms using

different frameworks.

 allows you to use and manage modern UI frameworks such as

AngularJS, ReactJS, Umber, Bootstrap, etc. using Bower (a

package manager for the web).

25

.NET Core Vs ASP.NET Core

.NET Core ASP.NET Core

Open-source and Cross-platform Open-source and Cross-platform

.NET Core is a runtime to execute

applications build on it.

ASP.NET Core is a web framework to build

web apps, IoT apps, and mobile backends on

the top of .NET Core or .NET Framework.

Install .NET Core Runtime to run

applications and install .NET Core

SDK to build applications.

There is no separate runtime and SDK are

available for ASP.NET Core. .NET Core runtime

and SDK includes ASP.NET Core libraries.

.NET Core 3.1 - latest version ASP.NET Core 3.1

There is no separate versioning for ASP.NET

Core. It is the same as .NET Core versions.
26

ASP.NET Core

 Supports Multiple Platforms

 Hosting: ASP.NET Core web application can be hosted on multiple platforms
with any web server such as IIS, Apache etc. It is not dependent only on IIS as
a standard .NET Framework.

 Fast - This reduces the request pipeline and improves performance and
scalability.

 IoC Container: It includes the built-in IoC container for automatic dependency
injection which makes it maintainable and testable.

 Integration with Modern UI Frameworks

 Code Sharing: allow to build a class library that can be used with other .NET
frameworks such as .NET Framework 4.x or Mono. Thus a single code base
can be shared across frameworks.

27

ASP.NET Core

• Side-by-Side App Versioning: ASP.NET Core runs on .NET Core, which

supports the simultaneous running of multiple versions of applications.

• Smaller Deployment Footprint: ASP.NET Core application runs on .NET Core,

which is smaller than the full .NET Framework. So, the application which uses

only a part of .NET CoreFX will have a smaller deployment size. This reduces

the deployment footprint.

28

Compilation and Execution of .NET applications:

CLI, MSIL and CLR

 C# programs run on the .NET Framework, which includes the common
language runtime (CLR) and a unified set of class libraries. The CLR is the
commercial implementation by Microsoft of the common language infrastructure
(CLI), an international standard that is the basis for creating execution and
development environments in which languages and libraries work together
seamlessly.

 Source code written in C# is compiled into an Microsoft Intermediate Language
(MSIL) or simply(IS) that conforms to the CLI specification. The IL code are
stored on disk in an executable file called an assembly, typically with an
extension of .exe or .dll.

 CLR performs just in time (JIT) compilation to convert the IL code to native
machine instructions. The CLR also provides other services related to
automatic garbage collection, exception handling, and resource management.

29

Compilation and Execution of .NET applications:

CLI, MSIL and CLR

 Code that is executed by the CLR is sometimes referred to as "managed

code," in contrast to "unmanaged code" which is compiled into native

machine language that targets a specific system.

 Language interoperability is a key feature of the .NET Framework.

Because the IL code produced by the C# compiler conforms to the

Common Type Specification (CTS), IL code generated from C# can

interact with code that was generated from the .NET versions of Visual

Basic, Visual C++, or any of more than 20 other CTS-compliant

languages. A single assembly may contain multiple modules written in

different .NET languages, and the types can reference each other just as

if they were written in the same language.
30

NET CLI: build, run, test and deploy .NET Core Applications

 The .NET Core command-line interface (CLI) is a new cross-platform tool
for creating, restoring packages, building, running and publishing .NET
applications.

 Visual Studio internally uses this CLI to restore, build and publish an

application. Other higher level IDEs, editors and tools can use CLI to
support .NET Core applications.

 The .NET Core CLI is installed with .NET Core SDK for selected
platforms. So we don't need to install it separately on the development
machine. We can verify whether the CLI is installed properly by opening

command prompt in Windows and writing dotnet and pressing Enter. If it
displays usage and help as shown below then it means it is installed
properly.

31

NET CLI: build, run, test and deploy .NET Core Applications

32

Creating and running the Hello World console application

 Execute the following commands on the command line or terminal:

 mkdir hwapp

 cd hwapp

 dotnet new console

 The command dotnet new console creates a new Hello World

console application in the current folder.

 The dotnet new console command creates two files:

◦ Program.cs and

◦ hwapp.csproj

33

Program.cs should look similar to the following listing

using System;

namespace hwapp

{

public class Program

{

public static void Main(string[] args)

{

Console.WriteLine("Hello World");

}

}

}

34

Running the Hello World console application

 When you’re using the .NET Core SDK, your application will be built

automatically when needed. There’s no need to worry about

whether or not you’re executing the latest code.

 Try running the Hello World application by executing dotnet run at

the command line or terminal.

35

Unit 3

HTTP & ASP.NET Core

1

The relationship between ASP.NET Core, ASP.NET, .NET Core, and .NET Framework.
ASP.NET Core runs on both .NET Framework and .NET Core, so it can run cross-platform.

ASP.NET Core application model

How does
an HTTP
web
request
work?

How does an HTTP web request work

5

 the user starts by requesting a web page, which causes an HTTP
request to be sent to the server. The server interprets the request,
generates the necessary HTML, and sends it back in an HTTP
response. The browser can then display the web page.

 Once the server receives the request, it will check that it makes
sense, and if it does, will generate an HTTP response. Depending on
the request, this response could be a web page, an image, a
JavaScript file, or a simple acknowledgment.

 As soon as the user’s browser begins receiving the HTTP response, it
can start displaying content on the screen, but the HTML page may
also reference other pages and links on the server.

How does
ASP.NET
Core
process
a request?

6

How does ASP.NET Core process a request?

7

 A request is received from a browser at the reverse proxy, which passes
the request to the ASP.NET Core application, which runs a self-hosted
web server.

 The web server processes the request and passes it to the body of the
application, which generates a response and returns it to the web server.
The web server relays this to the reverse proxy, which sends the response
to the browser.

 benefit of a reverse proxy is that it can be hardened against potential
threats from the public internet. They’re often responsible for additional
aspects, such as restarting a process that has crashed. Kestrel can stay as
a simple HTTP server. Think of it as a simple separation of concerns:
Kestrel is concerned with generating HTTP responses; a reverse proxy is
concerned with handling the connection to the internet.

Common web application architectures

 monolithic application

 All-in-one applications

 Layered Architecture

 Traditional "N-Layer" architecture applications

 Clean architecture

8

Monolithic Application

 A monolithic application is one that is entirely self-contained, in

terms of its behavior.

 It may interact with other services or data stores in the course of

performing its operations, but the core of its behavior runs within its

own process and the entire application is typically deployed as a

single unit.

 If such an application needs to scale horizontally, typically the entire

application is duplicated across multiple servers or virtual machines.

9

All-in-one applications

 The smallest possible number of projects for an application
architecture is one. In this architecture, the entire logic of the
application is contained in a single project, compiled to a single
assembly, and deployed as a single unit.

 A new ASP.NET Core project, whether created in Visual Studio or from
the command line, starts out as a simple "all-in-one" monolith. It
contains all of the behavior of the application, including presentation,
business, and data access logic. In a single project scenario, separation
of concerns is achieved through the use of folders. The default
template includes separate folders for MVC pattern responsibilities of
Models, Views, and Controllers, as well as additional folders for Data
and Services. Figure shows the file structure of a single-project app.

10

11

 Presentation details should be limited as much as possible to the Views
folder, and data access implementation details should be limited to classes
kept in the Data folder. Business logic should reside in services and classes
within the Models folder.

 Although simple, the single-project monolithic solution has some
disadvantages:

◦ As the project's size and complexity grows, the number of files and
folders will continue to grow as well. User interface (UI) reside in multiple
folders, which aren't grouped together alphabetically.

◦ Business logic is scattered between the Models and Services folders, and
there's no clear indication of which classes in which folders should
depend on which others. This lack of organization at the project level
frequently leads to spaghetti code.

◦ To address these issues, applications often evolve into multi-project
solutions, where each project is considered to reside in a particular layer
of the application.

12

Layered Architechture

 As applications grow in complexity, one way to manage that
complexity is to break up the application according to its
responsibilities or concerns. This follows the separation of concerns
principle and can help keep a growing codebase organized so that
developers can easily find where certain functionality is implemented.

 Layered architecture offers a number of advantages beyond just code
organization, though. By organizing code into layers, common low-
level functionality can be reused throughout the application.

 With a layered architecture, applications can enforce restrictions on
which layers can communicate with other layers. This helps to achieve
encapsulation. When a layer is changed or replaced, only those layers
that work with it should be impacted. By limiting which layers depend
on which other layers, the impact of changes can be mitigated so that
a single change doesn't impact the entire application.

13

Traditional "N-Layer" architecture applications

14

Traditional "N-Layer" architecture applications

 These layers are frequently abbreviated as UI, BLL (Business Logic
Layer), and DAL (Data Access Layer). Using this architecture, users
make requests through the UI layer, which interacts only with the BLL.
The BLL, in turn, can call the DAL for data access requests. The UI layer
shouldn't make any requests to the DAL directly, nor should it interact
with persistence directly through other means. Likewise, the BLL should
only interact with persistence by going through the DAL.

 One disadvantage of this traditional layering approach is that compile-
time dependencies run from the top to the bottom. That is, the UI layer
depends on the BLL, which depends on the DAL. This means that the
BLL, which usually holds the most important logic in the application, is
dependent on data access implementation details (and often on the
existence of a database). Testing business logic in such an architecture is
often difficult, requiring a test database. The dependency inversion
principle can be used to address this issue.

15

Figure shows

an example

solution,

breaking the

application into

three projects

by

responsibility

(or layer).

16

Clean architecture

 Applications that follow the Dependency Inversion Principle as well as the
Domain-Driven Design (DDD) principles tend to arrive at a similar
architecture. It's been cited as the Onion Architecture or Clean

Architecture.

 Clean architecture puts the business logic and application model at the
center of the application. Instead of having business logic depend on data
access or other infrastructure concerns, this dependency is inverted:

infrastructure and implementation details depend on the Application Core.

 This is achieved by defining abstractions, or interfaces, in the Application

Core, which are then implemented by types defined in the Infrastructure
layer. A common way of visualizing this architecture is to use a series of
concentric circles, similar to an onion.

17

Figure: style of architectural representation.
18

Clean Architecture

 In the diagram, dependencies flow toward the innermost circle. The Application

Core takes its name from its position at the core of this diagram. And you can

see on the diagram that the Application Core has no dependencies on other

application layers.

 The application's entities and interfaces are at the very center.

 Just outside, but still in the Application Core, are domain services, which

typically implement interfaces defined in the inner circle.

 Outside of the Application Core, both the UI and the Infrastructure layers

depend on the Application Core, but not on one another (necessarily).

19

Figure shows a more traditional horizontal layer diagram that better reflects the

dependency between the UI and other layers.
20

ASP.NET Core Architecture Overview

 The ideology behind ASP.NET Core in general, as the name suggests, is
to lay out web logic, infrastructure, and core components from each other
in order to provide a more development-friendly environment.

 The concept is somewhat similar to "N" tier/layer architecture, the only

difference is that ASP.NET Core defines the layers as the core
component of the platform which relieves the developer from redefining it
in order to make a solution more modular and reusable.

 What happens in ASP.NET Core is that the main business logic and UI
logic are encapsulated in ASP.NET Core Web App layer, while the

database access layer, cache services, and web API services are
encapsulated in infrastructure layer and common utilities, objects,
interfaces and reusable business services are encapsulated as micro-

services in application core layer.
21

ASP.NET Core Architecture Overview

 ASP.NET Core creates necessary pre-defined "N" tier/layers
architecture for us developers automatically, which saves our time
and effort to worry less about the complexity of necessary "N"
tier/architecture of the web project and focus more on the business
logic.

 ASP.NET Core that brings the benefit of a pre-built architectural
framework that eases out tier deployment of the project along with
providing pre-build Single Page Application (SPA) design pattern,
Razor Pages (Page based more cleaner MVC model) design
pattern, and traditional MVC (View based model) design pattern.

 These design patterns are mostly used in a hybrid manner but can
be utilized as an individual-only pattern as well.

22

23

MVC(Model – View - Controller) Design Pattern

 The MVC design has actually been around for a few decades, and

it's been used across many different technologies.

 The MVC design pattern is a popular design pattern for the user

interface layer of a software application.

 In larger applications, you typically combine a model-view-controller

UI layer with other design patterns in the application, like data

access patterns and messaging patterns.

 These will all go together to build the full application stack.

24

MVC(Model – View - Controller) Design Pattern

 The MVC separates the user interface (UI) of an application into the

following three parts −

 The Model − A set of classes that describes the data you are

working with as well as the business logic.

 The View − Defines how the application’s UI will be displayed. It is a

pure HTML which decides how the UI is going to look like.

 The Controller − A set of classes that handles communication from

the user, overall application flow, and application-specific logic.

25

Idea Behind MVC

 The idea is that you'll have a component called the view which is solely
responsible for rendering this user interface whether it should be HTML or
whether it actually should be a UI widget on a desktop application.

 The view talks to a model, and that model contains all the data that the
view needs to display.

 In a web application, the view might not have any code associated with it
at all.

 It might just have HTML and then some expressions of where to take the
pieces of data from the model and plug them into the correct places
inside the HTML template that you've built in the view.

 The controller organizes everything. When an HTTP request arrives for
an MVC application, the request gets routed to a controller, and then it's
up to the controller to talk to either the database, the file system, or a
model.

26

Idea Behind MVC

27

Projects and Conventions

28

Projects and Conventions

 .csproj –

Visual Studio now uses

.csproj file to manage

projects.

We can edit the .csproj

settings by :

 right click on the

project

 Select Edit < project-

name>.csproj as

shown below.

29

Projects and Conventions

 The .csproj for the project looks like above.

 The csproj file includes settings related to targeted .NET Frameworks, project

folders, NuGet package references etc.
30

Projects and Conventions

 Dependencies

The Dependencies in the

ASP.NET Core project

contain all the installed

server-side NuGet packages,

as shown.

31

 Right click on "Dependencies" and then click "Manage NuGet Packages.." to see

the installed NuGet packages, as shown below.

 It has installed three packages, Microsoft.AspNetCore.App package is for

ASP.NET web application, Microsoft.AspNetCore.Razor.Design package is for Razor

engine, and Microsoft.NETCore.App package is for .NET Core API.

32

Properties : The Properties node includes launchSettings.json file which includes Visual

Studio profiles of debug settings. The following is a default launchSettings.json file.

33

Unit 4

Creating ASP.NET Core MVC Applications

1

Creating a Web App & Run

 From the Visual Studio, select Create a new project.

 Select ASP.NET Core Web Application and then select Next.

 Name the project as you like or WebApplicationCoreS1

 Choose the location path to save your project.

 Click Create

 Select Web Application(Model-View-Controller), and then select

Create.

 Now, To run the App,

◦ Select Ctrl-F5 to run the app in non-debug mode, Or

◦ Select IIS Express Button.

2

Setting up the Environment

ASP.NET Core wwroot Folder

 By default, the wwwroot folder in the ASP.NET Core project is treated as a
web root folder. Static files can be stored in any folder under the web root
and accessed with a relative path to that root.

 In ASP.NET Core, only those files that are in the web root - wwwroot folder
can be served over an http request. All other files are blocked and cannot
be served by default.

 Generally, we find static files such as JavaScript, CSS, Images, library scripts
etc. in the wwwroot folder

 You can access static files with base URL and file name. For example, for css
folder, we can access via http://localhost:<port>/css/app.css

3

Setting up the Environment

ASP.NET Core – Program.cs Class

 ASP.NET Core web application project starts executing from the
entry point - public static void Main() in Program class.

ASP.NET Core – Startup.cs Class

 It is like Global.asax in the traditional .NET application. As the
name suggests, it is executed first when the application starts.

 The startup class can be configured at the time of configuring the
host in the Main() method of Program class.

4

Add a controller

 In Solution Explorer, right-click Controllers > Add > Controller

 In the Add Scaffold dialog box, select Controller Class – Empty

 In the Add Empty MVC Controller dialog, enter HelloWorldController and
select Add.

 Replace the contents of Controllers/HelloWorldController.cs

public string Index() {

return "This is my default action...";

}

public string Welcome() {

return "This is the Welcome action method...";

}
5

Add a controller

 MVC invokes controller classes (and the action methods within them)
depending on the incoming URL.

 The default URL routing logic used by MVC uses a format like this:

/[Controller]/[ActionName]/[Parameters]

 The routing format is set in the Configure method in Startup.cs file.

app.UseEndpoints(endpoints =>

{

endpoints.MapControllerRoute(

name: "default",

pattern: "{controller=Home}/{action=Index}/{id?}");

});

6

 Run your app & Check with these url in your browser

◦ https://localhost:{PORT}/HelloWorld

◦ https://localhost:{PORT}/HelloWorld/Index

◦ https://localhost:{PORT}/HelloWorld/Welcome

 Make changes for Welcome Method like this:
// GET: /HelloWorld/Welcome/

// Requires using System.Text.Encodings.Web;

public string Welcome(string name, int numTimes = 1)

{

return HtmlEncoder.Default.Encode($"Hello {name}, NumTimes is: {numTimes}");

}

 Check on your browser with these:
◦ https://localhost:{PORT}/HelloWorld/Welcome?name=AAA&numtimes=4

7

 Make changes again for Welcome Method with following code
public string Welcome(string name, int ID = 1) {

return HtmlEncoder.Default.Encode($"Hello {name}, ID is: {ID}");

}

 Check on your browser with these:
◦ http://localhost:{PORT}/HelloWorld/Welcome/3?name=AAA

 Here, the third URL segment matched the route parameter id. The
Welcome method contains a parameter id that matched the URL template
in the MapControllerRoute method in Startup.cs file. The trailing ? (in id?)
indicates the id parameter is optional.

app.UseEndpoints(endpoints =>

{

endpoints.MapControllerRoute(

name: "default",

pattern: "{controller=Home}/{action=Index}/{id?}");

});
8

Add a view

• In your Project, Right click on the Views folder, and then Add > New
Folder and name the folder HelloWorld.

• Right click on the Views/HelloWorld folder, and then Add > New Item.

• In the Add New Item dialog

• In the search box in the upper-right, enter view

• Select Razor View

• Keep the Name box value, Index.cshtml.

• Select Add

• Replace the contents of the

Views/HelloWorld/Index.cshtml

Razor view file with the following
9

Your Controller and View

10

Index.cshtml

• Navigate to https://localhost:{PORT}/HelloWorld

Change views and layout pages

• In page, Select the menu links (WebApplicationCoreS1, Home, Privacy)

• Each page shows the same menu layout.

• The menu layout is implemented in the Views/Shared/_Layout.cshtml file.

• Open the Views/Shared/_Layout.cshtml file.

• Layout templates allow you to specify the HTML container layout of your
site in one place and then apply it across multiple pages in your site.

• Find the @RenderBody() line. RenderBody is a placeholder where all the
view-specific pages you create show up, wrapped in the layout page.

• For example, if you select the Privacy link, the Views/Home/Privacy.cshtml
view is rendered inside the RenderBody method.

11

Change the title, footer, and menu link in the layout file

• Replace the content of the Views/Shared/_Layout.cshtml file with the
following markup. The changes are highlighted:

12

Passing Data from the Controller to the View

• Controllers are responsible for providing the data required in order for a
view template to render a response.

• In HelloWorldController.cs, change the Welcome method to add a Message
and NumTimes value to the ViewData dictionary.

• The ViewData dictionary is a dynamic object, which means any type can be
used; the ViewData object has no defined properties until you put
something inside it. The MVC model binding system automatically maps
the named parameters (name and numTimes) from the query string in the
address bar to parameters in your method.

• Ex looks like :

13

Passing Data from the Controller to the View

14

Passing Data from the Controller to the View

15

Controllers Responsibities

 Controllers are usually placed in a folder called "Controllers",
directly in the root of your MVC project.

 They are usually named based on their purpose, with the word
"Controller" as a suffix.

 The Controller has three major responsibilities

◦ Handle the Request from the User

◦ Build a Model – Controller Action method executes the
application logic and builds a model

◦ Send the Response – it returns the Result in
HTML/File/JSON/XML or other format as requested by user.

16

Controller Scaffolding Option

17

Controller Scaffolding Option

 Both the MVC and API Controller inherits from the same
Controller class and there is not much difference between them,
except that API Controller is expected to return the data in
serialized format to the client.

 Further, we have three options under both types of controllers.

◦ Empty

◦ With Read/Write Actions

◦ With Views, using entity framework

18

Actions

 Controller is just a regular .NET class, it can have fields, properties
and methods.

 Methods of a Controller class is referred to as actions - a method
usually corresponds to an action in your application, which then
returns something to the browser/user.

 All public methods on a Controller class is considered an Action.

 For instance, the browser might request a URL like
/Products/Details/1 and then you want your ProductsController
to handle this request with a method/action called Details.

19

When creating Action Method, points to remember

 Action methods Must be a public method

 The Action method cannot be a Static method or an Extension
method.

 The Constructor, getter or setter cannot be used.

 Inherited methods cannot be used as the Action method.

 Action methods cannot contain ref or out parameters.

 Action Methods cannot contain the attribute [NonAction].

 Action methods cannot be overloaded

20

Actions Verbs

 To gain more control of how your actions are called, you can
decorate them with the so-called Action Verbs.

 an action can be accessed using all possible HTTP methods (the
most common ones are GET and POST)

 Edit action can be accessed with a GET request.
[HttpGet]

public IActionResult Edit()

{

return View();

}

21

Actions Verbs

[HttpGet]

public IActionResult Edit()

{

return Content("Edit");

}

[HttpPost]

public IActionResult Edit(Product product)

{

product.Save();

return Content("Product Updated!");

}

22

Actions Result Types

 When the Action (method) finishes it work, it will usually return
something, as IActionResult interface

 Some list of Action Result are:
◦ Content() - returns specified string as plain text

◦ View() - returns a View to the client

◦ PartialView() - returns a Partial View to the client

◦ File() - returns the content of a specified file to the client

◦ Json() - returns a JSON response to the client

◦ Redirect() and RedirectPermanent() - returns a redirect response to the
browser (temporary or permanent), redirecting the user to another URL

◦ StatusCode() - returns a custom status code to the client
23

Actions Result - Ex

 A common use case for this is to return either a View or a piece of

content if the requested content is found, or a 404 (Page not

Found) error if its not found. It could look like this:

public IActionResult Details(int id)

{

Product product = GetProduct(id);

if (product != null)

return View(product);

return NotFound();

}
24

Rendering HTML with Views

 In MVC pattern, the view handles the app's data presentation and

user interaction.

 A view is an HTML template with embedded Razor markup. Razor

markup is code that interacts with HTML markup to produce a

webpage that's sent to the client

 In ASP.NET Core MVC, views are .cshtml files that use the C#

programming language in Razor markup. Usually, view files are

grouped into folders named for each of the app's controllers. The

folders are stored in a Views folder at the root of the app 25

Rendering HTML with Views

 The Home controller is represented by a Home folder inside the Views folder.

The Home folder contains the views for the About, Contact, and Index

(homepage) webpages. When a user requests one of these three webpages,

controller actions in the Home controller determine which of the three views

is used to build and return a webpage to the user.

 Use layouts to provide consistent webpage sections and reduce code

repetition. Layouts often contain the header, navigation and menu elements,

and the footer. The header and footer usually contain boilerplate markup for

many metadata elements and links to script and style assets. Layouts help you

avoid this boilerplate markup in your views.

26

Creating a View

 To create a view, add a new file and give it the same name as its

associated controller action with the .cshtml file extension.

 For Ex - For About action in the Home controller, create an

About.cshtml file in the Views/Home folder:

@{

ViewData["Title"] = "About";

}

<h2>@ViewData["Title"].</h2>

<h3>@ViewData["Message"]</h3>

<p>Use this area to provide additional information.</p>
27

Creating a View

 Razor markup starts with the @ symbol.

 Your can write C# code within Razor code blocks set off by curly

braces ({ ... }).

 You can display values within HTML by simply referencing the

value with the @ symbol. See the contents of the <h2> and <h3>

elements above.

28

How Controllers Specify Views

 Views are typically returned from actions as a ViewResult, which

is a type of ActionResult.

HomeController.cs

public IActionResult About()

{

ViewData["Message"] = "Your application description page.";

return View();

}

29

How Controllers Specify Views

30

Passing Data to Views: ViewData & ViewBag

 Views have access to a weakly typed(loosely typed) collection of data.

You can use these for passing small amounts of data in and out of

controllers and views

 The ViewData property is a dictionary of weakly typed objects.

 The ViewBag property is a wrapper around ViewData that provides

dynamic properties for the underlying ViewData collection.

 ViewData and ViewBag are dynamically resolved at runtime.

 ViewData is a ViewDataDictionary object accessed through string keys

31

Ex - ViewData

// HomeController.cs

public class HomeController : Controller {

public IActionResult About() {

ViewData["Message"] = "Your application description page.";

return View();

}

}

// About.cshtml
@{

ViewData["Title"] = "About";

}

<h3>@ViewData["Message"]</h3>
32

Ex - ViewBag
// HomeController.cs

public class HomeController : Controller {

public IActionResult SomeAction() {

ViewBag.Greeting = “Hello";

return View();

}

}

//SomeAction.cshtml

@{

ViewData["Title"] = “My Title";

}

<h3>@ViewBag.Greeting</h3>
33

Razor Syntax

 The biggest advantage of the Razor is the fact that you can mix

client-side markup (HTML) with server-side code (e.g C# or

VB.NET), without having to explicitly jump in and out of the two

syntax types.

 In Razor, you can reference server-side variables etc. by simply

prefixing it with an at-character (@).

<p>Hello, the current date is: @DateTime.Now.ToString()</p>

34

Ex - Razor & HTML Encoding

@{

var helloWorld = "Hello, world!";

}

<p>@helloWorld</p>

<p>@Html.Raw(helloWorld)</p>

35

Ex – Razor Explicit Expressionsc

@{

var name = "John Doe";

}

Hello, @(name.Substring(0,4)).

Your age is: @(37 + 5).

36

Ex – Multi-statement Razor blocks

@{

var sum = 32 + 10;

var greeting = "Hello, world!";

var text = "";

for(int i = 0; i <3; i++)

{

text += greeting + " The result is: " + sum + "\n";

}

}

<h2>CodeBlocks</h2>

Text: @text
37

Razor Server-side Comments

 Sometimes you may want to leave comments in your code, or

comment out lines of code temporarily to test things.

@*

Here's a Razor server-side comment

It won't be rendered to the browser

*@

38

Razor Server-side Comments

 If you're inside a Razor code block, you can even use the regular C#
style comments:

@{

@*

Here's a Razor server-side comment

*@

// C# style single-line comment

/*

C# style multiline comment

It can span multiple lines

*/

}
39

Razor Syntax – Variables and Expressions

@{

string helloWorldMsg = "Good day";

if(DateTime.Now.Hour >17){

helloWorldMsg = "Good evening";

}

helloWorldMsg += ", world!";

helloWorldMsg = helloWorldMsg.ToUpper();

}

<div> @helloWorldMsg </div>
40

Razor Syntax – The if-else statement

@if(DateTime.Now.Year >= 2042)

{

The year 2042 has finally arrived!

}

else

{

We're still waiting for the year of 2042...

}

41

Razor Syntax
– Loop

@{

List<string> names = new List<string>() {

"VB.NET", "C#", "Java"

};

}

@for (int i = 0; i < names.Count; i++)

{

@names[i]

}

@foreach (string name in names)

{

@name

}

 42

Understanding Tag Helpers

 Tag Helpers enable server-side code to participate in creating and

rendering HTML elements in Razor files. Tag helpers are a new

feature and similar to HTML helpers, which help us render HTML.

43

Understanding Tag Helpers

 Tag Helpers enable server-side code to participate in creating and

rendering HTML elements in Razor files. Tag helpers are similar to

HTML helpers, which help us render HTML.

 There are many built-in Tag Helpers for common tasks, such as

creating forms, links, loading assets etc.

 Tag Helpers are authored in C#, and they target HTML elements

based on the element name, attribute name, or the parent tag.

 For ex, LabelTagHelper can target the HTML <label> element.

 Tag Helpers reduce the explicit transitions between HTML and C# in

Razor views.
2

Understanding Tag Helpers

 In order to use Tag Helpers, we need to install a NuGet library

and also add an addTagHelper directive to the view or views that

use these tag helpers.

 Let us right-click on your project in the Solution Explorer and

select Manage NuGet Packages....

 Search for Microsoft.AspNet.Mvc.TagHelpers and click the Install

button.

 In the dependencies section, you will see

"Microsoft.AspNet.Mvc.TagHelpers"

3

Understanding Tag Helpers

4

5

 You will receive the

following dialog box.

 Click on I Accept

Writing your own Tag Helpers

 You can also write your own tag helper. You can place it right inside your

application project, but you need to tell the Razor view engine about the tag

helper. By default, they are not just rendered down to the client, even though

these tag helpers look like they blend into the HTML.

 Razor will call into some code to process a tag helper; it can remove itself

from the HTML and it can also add additional HTML.

 You need to register your tag helpers with Razor, even the Microsoft tag

helpers, in order for Razor to be able to spot these tag helpers in the markup

and to be able to call into the code that processes the tag helper.

 The directive to do that is addTagHelper, and you can place this into an

individual view or ViewImports file.
6

Form Tag Helper

 The Form Tag Helper is bound to the HTML <form> element.

 provides several server-side attributes which help us to

manipulate the generated HTML.

 Some of the available attributes are

◦ asp-controller: The name of the MVC controller.to use

◦ asp-action: The name of the MVC Controller action.method to use

◦ asp-area: The name of the Controller Area to use

7

Form Tag Helper

EX

<form asp-controller="Home" asp-action="Create">

The above code translated into

<form method="post" action="/Home/Create">

<input name="__RequestVerificationToken" type="hidden"

value="CfDJ8PlIso5McDBOjgPkVg9O4mnNiAE8U0HkVlA9e-

Mtc76u7fSjCnoy909Co49eGlbyJx

pp-nYphF_XkOrPo0tTGdygc2H8nCtZCcGURMZ9Uf01fPOg5jRARxTHXnb8N6yYADtdQSn

JItXtYsir8GCWqZM" />

</form>
8

Form Tag Helper

Label tag Helper :
<label asp-for="@Model.Name"></label>

Which translates into <label for="Name">Name</label>

 Using @Model keyword is optional here. You can directly use the model property name as

shown below.

<label asp-for="Name"></label>

Input Tag Helper - Similarly, the Input tag Helper is applied to the input HTML element.

<input asp-for="Name"/>

Which translates into <input type="text" id="Name" name="Name" value=""/>

◦ The type, id & name attributes are automatically derived from the model property type & data

annotations applied on the model property

9

Form Tag Helper

EX

<form asp-controller="Home" asp-action = "Create">

<label asp-for = "Name"></label>

<input asp-for = "Name"/>

<label asp-for = "Rate"></label>

<input asp-for = "Rate"/>

<label asp-for = "Rating"></label>

<input asp-for = "Rating"/>

<input type="submit" name="submit"/>

</form>

10

List of Built-in Tag Helpers

TagHelper Targets Attributes

Form Tag Helper <Form> asp-action, asp-all-route-data, asp-area, asp-

controller, asp-protocol, asp-route, asp-route-

Anchor Tag Helpers <a> asp-action, asp-all-route-data, asp-area, asp-

controller, asp-Protocol, asp-route, asp-route-

Image Tag Helper append-version

Input Tag Helper <input> for

Label Tag Helper <label> For

Link Tag Helper <link> href-include, href-exclude, fallback-href, fallback-test-

value, append-version

11

List of Built-in Tag Helpers

TagHelper Targets Attributes

Options Tag Helper <select> asp-for, asp-items

Partial Tag Helper <partial> name, model, for, view-data

Script Tag Helper <script> src-include, src-exclude, fallback-src, fallback-src-

include, fallback-src-exclude

fallback-test, append-version

Select Tag Helper <select> for, items

Textarea Tag Helper <textarea> for

Validation Message

Tag Helper

 validation-for

Validation Summary

Tag Helper

<div> validation-summary

12

Model

 The Model in an MVC application should represent the current state of the

application, as well as business logic and/or operations.

 A very important aspect of the MVC pattern is the Separation of Concerns

(SoC). SoC is achieved by encapsulating information inside a section of code,

making each section modular, and then having strict control over how each

module communicates. For the MVC pattern, this means that both the View

and the Controller can depend on the Model, but the Model doesn't depend

on neither the View nor the Controller.

 As mentioned, the Model can be a class already defined in your project, or it

can be a new class you add specifically to act as a Model. Therefore, Models

in the ASP.NET MVC framework usually exists in a folder called "Models".

13

ViewModels

 There are, however, a lot of situations where you may want to create

a specific ViewModel for a specific View. This can be to extend or

simplify an existing Model, or because you want to represent

something in a View that's not already covered by one of your

models.

 ViewModels are often placed in their own directory in your project,

called "ViewModels".

 Some people also prefer to postfix the name of the class with the

word ViewModel, e.g. "AddressViewModel" or "EditUserViewModel".

14

When to use ViewModel?

 To represent something in a View that's not already contained by an

existing Model: When you pass a Model to a View, you are free to pass

e.g. a String or another simple type, but if you want to pass multiple

values, it might make more sense to create a simple ViewModel to hold

the data, like this one:

public class AddressViewModel

{

public string StreetName { get; set; }

public string ZipCode { get; set; }

}

15

When to use ViewModel?

 To access the data of multiple Models from the same View: This is

relevant in a lot of situations, e.g. when you want to create a FORM where

you can edit the data of multiple Models at the same time. You could then

create a ViewModel like this:

public class EditItemsViewModel

{

public Model1Type Model1 { get; set; }

public Model2Type Model2 { get; set; }

}

16

When to use ViewModel?

 To simplify an existing Model: Imagine that you have a huge class with information

about a user. Perhaps even sensitive information like passwords. When you want to

expose this information to a View, it can be beneficiary to only expose the parts of it

you actually need. For instance, you may have a small widget showing that the user is

logged in, which username they have and for how long they have been logged in. So

instead of passing your entire User Model, you can pass in a much leaner ViewModel,

designed specifically for this purpose:

public class SimpleUserInfoViewModel {

public string Username { get; set; }

public TimeSpan LoginDuration { get; set; }

}

17

When to use ViewModel?

 To extend an existing Model with data only relevant to the View: On the other hand,

sometimes your Model contains less information than what you need in your View. An

example of this could be that you want some convenience properties or methods

which are only relevant to the View and not your Model in general, like in this example

where we extend a user Model (called WebUser) with a LoginDuration property,

calculated from the LastLogin DateTime property already found on the WebUser class:

public class WebUser

{

public DateTime LastLogin { get; set; }

}

18

From there on there are two ways of doing things: You can either extend this class (inherit from it)
or add a property for the WebUser instance on the ViewModel. Like this:

public class UserInfoViewModel {

public WebUser User { get; set; }

public TimeSpan LoginDuration

{

get { return DateTime.Now - this.User.LastLogin; }

}

}

Or like this:

public class ExtendedUserInfoViewModel : WebUser {

public TimeSpan LoginDuration

{

get { return DateTime.Now - this.LastLogin; }

}

}
19

Model Binding in ASP.NET Core

 The Model Binding extracts the data from an HTTP request and provides them to the

controller action method parameters. The action method parameters may be simple

types like integers, strings, etc. or complex types such as Student, Order, Product, etc.

 The controller action method handle the incoming HTTP Request.

 Our application default route template ({controller=Home}/{action=Index}/{Id?})

 When you load this url - http://localhost:52191/home/details/101, shows the Details

action method.

20

Using Model Binding

 In Model Folder, create a class WebUser.cs

public class WebUser

{

public string FirstName { get; set; }

public string LastName { get; set; }

}

 In Controller Folder, create a new Controller as UserController.cs and add action method as

follows:

[HttpGet]

public IActionResult SimpleBinding()

{

return View(new WebUser() { FirstName = "John", LastName = "Doe" });

}

21

 By letting our View know what kind of Model it can expect, with the @model directive, we can
now use various helper methods (more about those later) to help with the generation of a
FORM:

 In View Folder, create a file SimpleBinding.cshtml

@using(var form = Html.BeginForm())

{

<div>

@Html.LabelFor(m => m.FirstName)

@Html.TextBoxFor(m => m.FirstName)

</div>

<div>

@Html.LabelFor(m => m.LastName)

@Html.TextBoxFor(m => m.LastName)

</div>

<input type="submit" value="Submit" />

}

22

 The result will be a very generic-looking FORM, but with labels and textboxes

designated to host the properties of your Model:

 By default, the FORM will be posted back to the same URL that delivered it, so to

handle that, we need a POST-accepting Controller method to handle the FORM

submission:

[HttpPost]

public IActionResult SimpleBinding(WebUser webUser)

{

//TODO: Update in DB here...

return Content($"User {webUser.FirstName} updated!");

}

23

Data Annotations

 Data Annotations (sometimes referred to as Model Attributes), which basically allows

you to add meta data to a property.

 The cool thing about DataAnnotations is that they don't disturb the use of your Models

outside of the MVC framework.

 When generating the label, the name of the property is used, but property names are

generally not nice to look at for humans. As an example of that, we might want to

change the display-version of the FirstName property to "First Name".

public class WebUser

{

[Display(Name="First Name")]

public string FirstName { get; set; }

}

24

Model Validation
 They will allow you to enforce various kinds of rules for your properties, which will be used in

your Views and in your Controllers, where you will be able to check whether a certain Model is
valid in its current state or not (e.g. after a FORM submission).

 Let’s add just a couple of basic validation to the WebUser
public class WebUser {

[Required]

[StringLength(25)]

public string FirstName { get; set; }

[Required]

[StringLength(50, MinLength(3)]

public string LastName { get; set; }

[Required]

[EmailAddress]

public string MailAddress { get; set; }

}

25

Model Validation

 Notice how the three properties have all been decorated with DataAnnotations.

 First of all, all properties have been marked with the [Required] attribute, meaning that

a value is required - it can't be NULL.

 [StringLength] attribute make requirements about the maximum, and in one case

minimum, length of the strings. These are of course particularly relevant if your Model

corresponds to a database table, where strings are often defined with a maximum

length.

 For the last property, [EmailAddress] attribute ensure that the value provided looks like

an e-mail adress.

26

In your
View
Page

@model HelloMVCWorld.Models.WebUser

@using(var form = Html.BeginForm()) {

<div>

@Html.LabelFor(m => m.FirstName)

@Html.TextBoxFor(m => m.FirstName)

</div>

<div>

@Html.LabelFor(m => m.LastName)

@Html.TextBoxFor(m => m.LastName)

</div>

<div>

@Html.LabelFor(m => m.MailAddress)

@Html.TextBoxFor(m => m.MailAddress)

</div>

<input type="submit" value="Submit" />

}

27

In your Controller
public class ValidationController : Controller

{

[HttpGet]

public IActionResult SimpleValidation()

{

return View();

}

[HttpPost]

public IActionResult SimpleValidation(WebUser webUser)

{

if(ModelState.IsValid)

return Content("Thank you!");

else

return Content("Model could not be validated!");

}

}

28

 In POST action, we check the

IsValid property of the

ModelState object. Depending

on the data submitted in the

FORM, it will be either true or

false, based on the validation

rules we defined for the Model

(WebUser).

 With this in place, you can now

prevent a Model from being

saved, e.g. to a database,

unless it's completely valid.

Displaying
validation errors

@model HelloMVCWorld.Models.WebUser

@using(var form = Html.BeginForm()) {

<div>

@Html.LabelFor(m => m.FirstName)

@Html.TextBoxFor(m => m.FirstName)

@Html.ValidationMessageFor(m => m.FirstName)

</div>

<div>

@Html.LabelFor(m => m.LastName)

@Html.TextBoxFor(m => m.LastName)

@Html.ValidationMessageFor(m => m.LastName

</div>

<div>

@Html.LabelFor(m => m.MailAddress)

@Html.TextBoxFor(m => m.MailAddress)

@Html.ValidationMessageFor(m => m.MailAddress)

</div>

<input type="submit" value="Submit" />

}
29

 Let’s extend our FORM so that

it can display error messages to

the user. We can use helper

method -

ValidationMessageFor().

 It will simply output the error

message related to the field, if

there is one - otherwise,

nothing will be outputted.

Here's the extended version of

our FORM:

In your Controller
public class ValidationController : Controller

{

[HttpGet]

public IActionResult SimpleValidation()

{

return View();

}

[HttpPost]

public IActionResult SimpleValidation(WebUser webUser)

{

if(ModelState.IsValid)

return Content("Thank you!");

else

return View(webUser);

}

}

30

 make sure that once the FORM

is submitted, and if there are

validation errors, we return the

FORM to the user, so that they

can see and fix these errors.

 We do that in our Controller,

simply by returning the View

and the current Model state, if

there are any validation errors:

Try Submitting the Form

31

 Try submitting the FORM with empty fields, you should be immediately returned to

the FORM, but with validation messages next to each of the fields.

 If you try submitting the FORM with a value that doesn't meet the StringLength

requirements, you will notice that there are even automatically generated error

messages for these as well. For instance, if you submit the FORM with a LastName

that's either too long or too short, you will get this message:

 The field LastName must be a string with a minimum length of 3 and a maximum

length of 50.

What if you want more control of these messages?

32

 But No problem, they can be overridden directly in the DataAnnotations of the
Model. Here's a version of our Model where we have applied custom error messages:

public class WebUser {

[Required(ErrorMessage = "You must enter a value for the First Name field!")]

[StringLength(25, ErrorMessage = "The First Name must be no longer than 25
characters!")]

public string FirstName { get; set; }

[Required(ErrorMessage = "You must enter a value for the Last Name field!")]

[StringLength(50, MinimumLength = 3, ErrorMessage = "The Last Name must be between 3
and 50 characters long!")]

public string LastName { get; set; }

[Required(ErrorMessage = "You must enter a value for the Mail Address field!")]

[EmailAddress(ErrorMessage = "Please enter a valid e-mail address!")]

public string MailAddress { get; set; }

}

Displaying a validation
summary

33

 Use ValidationSummary() method found

on the Html helper object:

 Now, When the FORM is submitted, It will

be returned with validation errors

@model HelloMVCWorld.Models.WebUser

@using(var form = Html.BeginForm())

{

@Html.ValidationSummary()

<div>

@Html.LabelFor(m => m.FirstName)

@Html.TextBoxFor(m => m.FirstName)

</div>

<div>

@Html.LabelFor(m => m.LastName)

@Html.TextBoxFor(m => m.LastName)

</div>

<div>

@Html.LabelFor(m => m.MailAddress)

@Html.TextBoxFor(m => m.MailAddress)

</div>

<input type="submit" value="Submit" />

}

Types of Model Validation DataAnnotations

34

 [Required] - Specifies that a value needs to be provided for this property

 [StringLength] - Allows you to specify at least a maximum amount of characters. We

can also add Minumum Length as well.

[StringLength(50, MinimumLength = 3)]

 [Range] - specify a minimum and a maximum value for a numeric property (int, float,

double etc.)

[Range(1, 100)]

 [Compare] - allows you to set up a comparison between the property

[Compare("MailAddressRepeated")]

public string MailAddress { get; set; }

public string MailAddressRepeated { get; set; }

URL Routing and Features

35

 The Routing is the Process by which ASP.NET Core inspects the incoming

URLs and maps them to Controller Actions.

 It also used to generate the outgoing URLs.

 This process is handled by the Routing Middleware. The Routing

Middleware is available in Microsoft.AspNetCore.Routing Namespace .

 The Routing has two main responsibilities:

1. It maps the incoming requests to the Controller Action

2. Generate an outgoing URLs that correspond to Controller actions.

Routing in ASP.NET MVC Core

36

Routing

Action

Action
(List) View Routing

Chooses

Mapping the Incoming Requests

HTTP
Request

Controller

Controller
(Customer)

Customer/list

Constructing the URLs

Routing in ASP.NET MVC Core

How Routing works in ASP.NET MVC Core

37

How Routing Works in ASP.NET Core

To Router Handler

No

Yes

Next Middleware

Previous Middleware

HTTP Request

Parse URLs

Locate the matching route
in the Routes Collection

Route
found ?

How Routing works in ASP.NET MVC Core

38

 When the Request arrives at the Routing Middleware it does the

following.

1. It Parses the URL.

2. Searches for the Matching Route in the RouteCollection.

3. If the Route found then it passes the control to RouteHandler.

4. If Route not found, it gives up and invokes the next Middleware.

How Routing works in ASP.NET MVC Core

39

What is a Route

 The Route is similar to a roadmap. We use a roadmap to go to our

destination. Similarly, the ASP.NET Core Apps uses the Route to go to the

controller action.

 The Each Route contains a Name, URL Pattern (Template), Defaults and

Constraints. The URL Pattern is compared to the incoming URLs for a match.

An example of URL Pattern is {controller=Home}/{action=Index}/{id?}

 The Route is defined in the Microsoft.AspNetCore.routing namespace .

How Routing works in ASP.NET MVC Core

40

What is a Route Collection

 The Route Collection is the collection of all the Routes in the Application.

 An app maintains a single in-memory collection of Routes. The Routes

are added to this collection when the application starts.

 The Routing Module looks for a Route that matches the incoming request

URL on each available Route in the Route collection.

 The Route Collection is defined in the namespace

Microsoft.AspNetcore.routing.

How Routing works in ASP.NET MVC Core

41

What is a Route Handler

 The Route Handler is the Component that decides what to do with the

route.

 When the routing Engine locates the Route for an incoming request, it

invokes the associated RouteHandler and passes the Route for further

processing. The Route handler is the class which implements the

IRouteHandler interface.

 In the ASP.NET Core, the Routes are handled by the MvcRouteHandler.

How Routing works in ASP.NET MVC Core

42

MVCRouteHandler

 Default Route Handler for the ASP.NET Core MVC Middleware. The

MVCRouteHandler is registered when we register the MVC Middleware

in the Request Pipeline. You can override this and create your own

implementation of the Route Handler.

 defined in the namespace Microsoft.AspnetCore.Mvc.

 The MVCRouteHandler is responsible for invoking the Controller Factory,

which in turn creates the instance of the Controller associated the Route.

 The Controller then takes over and invokes the Action method to

generate the View and Complete the Request.

How to setup Routes

43

 There are two different ways by which we can set up routes.

1. Convention-based routing

2. Attribute routing

Convention-based routing

 The Convention based Routing creates routes based on a series of

conventions, defined in the ASP.NET Core Startup.cs file.

Attribute routing

 Creates routes based on attributes placed on controller actions.

The two routing systems can co-exist in the same system.

How to setup Routes

44

 The Convention based Routes are configured in the Configure method of

the Startup class. The Routing is handled by the Router Middleware.

ASP.NET MVC adds the routing Middleware to the Middleware pipeline

when using the app.UseMVC or app.UseMvcWithDefaultRoute.

URL Patterns

45

 The Each route must contain a URL pattern. This Pattern is compared to

an incoming URL. If the pattern matches the URL, then it is used by the

routing system to process that URL.

46

 The URL Pattern {controller=Home}/{action=Index}/{id?} Registers route

where the first part of the URL is Controller, the second part is the action

method to invoke on the controller. The third parameter is an additional

data in the name of id.

 The Each segment in the incoming

URL is matched to the corresponding

segment in the URL Pattern.

 {controller=Home}/{action=Index}/{id?}

has three segments. The last one is

optional.

Web API Applications

47

 Before ASP.NET Web API core, the two-different framework MVC and

Web API were pretty much similar.

 Both used to support Controller and action methods. In earlier version,

the main purpose of Web API was to make REST API calls and there were

view engine like Razor.

 On the other hand, MVC was designed for HTML front ends to

communicate to backend in a standard a web application. However,

when ASP.NET Web API core was released, the main target was to

support JSON based REST API. It combines the key feature of both MVC

and old Web API framework.

ASP.NET Core Web API Architecture

48

 ASP.NET Web API is mainly based on the MVC architecture. The .NET

framework and .NET Core also share a number of APIs.

.NET Framework
API

Shared
API

.NET Core API

New Features in ASP.NET Core Web API

49

 Cross Platform - ASP.NET Web API Core is cross-platform; therefore, it is

suitable for running on any platform like Windows, Mac, or Linux. Earlier

ASP.NET applications were not able to run on Linux and Mac operating

system.

 Backward Compatibility - For existing application, ASP.NET Web API Core

supports two framework.

 Faster - ASP.NET Web API Core is much faster than previous versions

 Static Content - wwwroot folder contain all the static content e.g. js, css,

images.

Creating Web API in ASP.NET Core

50

 Create the controller that have 3 things:

◦ should have [ApiController] attribute on them. This attribute tells that

the controller will serve HTTP API Responses.

◦ derive from ControllerBase class instead of Controller class.

◦ should have attribute routing applied on them like

[Route("someUrl/[controller]")].

◦ The controller of a Web API

looks like:

API Controllers

51

 API Controller is just a normal Controller, that allows data in the model to

be retrieved or modified, and then deliver it to the client. It does this

without having to use the actions provided by the regular controllers.

 The data delivery is done by following a pattern known by name as REST.

REST Stands for REpresentational State Transfer pattern, which contains 2

things:

◦ Action Methods which do specific operations and then deliver some data to the

client. These methods are decorated with attributes that makes them to be invoked

only by HTTP requests.

◦ URLs which defines operational tasks. These operations can be – sending full or

part of a data, adding, deleting or updating records. In fact it can be anything.

API Controller

52

 MVC and API controllers both derive from the Controller class, which

derives from ControllerBase:

public class MyMvc20Controller : Controller {}

[Route("api/[controller]")]

public class MyApi20Controller : Controller {}

 As of Core 2.1 (and 2.2), the template-generated classes look a little

different, where a Web controller is a child of the Controller class and an

API controller is a child of ControllerBase.

public class MyMvc21Controller : Controller {}

[Route("api/[controller]")]

public class MyApi21Controller : ControllerBase {}

API Controller

53

 This can be expressed in the table below:

Namespace Microsoft.AspNetCore.Mvc

Common parent ControllerBase (Abstract Class)

MVC Controller parent Controller: ControllerBase

MVC Controller MyMvcController: Controller

JSON

54

 The new built-in JSON support, System.Text.Json, is high-performance,

low allocation, and based on Span<byte>.

 The System.Text.Json namespace provides high-performance, low-

allocating, and standards-compliant capabilities to process JavaScript

Object Notation (JSON), which includes serializing objects to JSON text

and deserializing JSON text to objects, with UTF-8 support built-in.

 It also provides types to read and write JSON text encoded as UTF-8, and

to create an in-memory document object model (DOM) for random

access of the JSON elements within a structured view of the data.

Adding JSON Patch To Your ASP.Net Core Project

55

 Run Package Manager and install JSON Patch Library with command:

◦ Install-PackageMicrosoft.AspNetCore.JsonPatch

 Write in your controller

Adding JSON Patch To Your ASP.net Core Project

56

 In above example we are just using a simple object stored on the

controller and updating that, but in a real API we will be pulling the data

from a datasource, applying the patch, then saving it back.

 When we call this endpoint with the following payload :

[{"op":"replace","path":"FirstName","value":"Bob"}]

 We get the response of :

{"firstName":"Bob","lastName":"Smith"}

first name got changed to Bob!

DEPENDENCY INJECTION AND IOC CONTAINERS

57

 ASP.NET Core is designed from scratch to support Dependency Injection.

 ASP.NET Core injects objects of dependency classes through constructor

or method by using built-in IoC container.

 ASP.NET Core framework contains simple out-of-the-box IoC container

which does not have as many features as other third party IoC

containers. If you want more features such as auto-registration, scanning,

interceptors, or decorators then you may replace built-in IoC container

with a third party container.

BUILT-IN IOC CONTAINER

58

 The built-in container is represented by IServiceProvider implementation

that supports constructor injection by default. The types (classes)

managed by built-in IoC container are called services.

 There are basically two types of services in ASP.NET Core:

1. Framework Services: Services which are a part of ASP.NET Core framework such

as IApplicationBuilder, IHostingEnvironment, ILoggerFactory etc.

2. Application Services: The services (custom types or classes) which you as a

programmer create for your application.

 In order to let the IoC container automatically inject our application

services, we first need to register them with IoC container.

Registering Application Service

59

 Consider the following example of simple ILog interface and its
implementation class. We will see how to register it with built-in IoC container
and use it in our application.

public interface ILog {

void info(string str);

}

class MyConsoleLogger : ILog {

public void info(string str)

{

Console.WriteLine(str);

}

}

Registering Application Service

60

 ASP.NET Core allows us to register our application services with IoC container,
in the ConfigureServices method of the Startup class. The ConfigureServices
method includes a parameter of IServiceCollection type which is used to
register application services.

 Let's register above ILog with IoC container in ConfigureServices() method as
shown below. Example: Register Service

public class Startup {

public void ConfigureServices(IServiceCollection services) {

services.Add(new ServiceDescriptor(typeof(ILog),

new MyConsoleLogger()));

} // other code removed for clarity..

}

Registering Application Service

61

 In above ex:

 Add() method of IServiceCollection instance is used to register a service with
an IoC container.

 ServiceDescriptor is used to specify a service type and its instance. We have
specified ILog as service type and MyConsoleLogger as its instance. This will
register ILog service as a singleton by default.

 Now, an IoC container will create a singleton object of MyConsoleLogger class
and inject it in the constructor of classes wherever we include ILog as a
constructor or method parameter throughout the application.

 Thus, we can register our custom application services with an IoC container in
ASP.NET Core application. There are other extension methods available for
quick and easy registration of services.

Understanding Service Lifetime for Registered Service

62

 Built-in IoC container manages the lifetime of a registered service type. It

automatically disposes a service instance based on the specified lifetime.

 The built-in IoC container supports three kinds of lifetimes:

1. Singleton: IoC container will create and share a single instance of a

service throughout the application's lifetime.

2. Transient: The IoC container will create a new instance of the specified

service type every time you ask for it.

3. Scoped: IoC container will create an instance of the specified service

type once per request and will be shared in a single request.

Understanding Service Lifetime for Registered Service

63

 The following example shows how to register a service with different lifetimes.

 Example: Register a Service with Lifetime

public void ConfigureServices(IServiceCollection services)

{

// singleton

services.Add(new ServiceDescriptor(typeof(ILog), new MyConsoleLogger()));

services.Add(new ServiceDescriptor(typeof(ILog), typeof(MyConsoleLogger),

ServiceLifetime.Transient)); // Transient

services.Add(new serviceDescriptor(typeof(ILog), typeof(MyConsoleLogger),

ServiceLifetime.Scoped)); // Scoped

}

IOC Containers

64

 ASP.NET Core framework includes built-in IoC container for automatic dependency
injection. The built-in IoC container is a simple yet effective container.

 The followings are important interfaces and classes for built-in IoC container:

Interfaces

1. IServiceProvider

2. IServiceCollection

Classes

1. ServiceProvider

2. ServiceCollection

3. ServiceDescription

4. ServiceCollectionServiceExtensions

5. ServiceCollectionContainerBuilderExtensions

IOC Containers

65

IServiceProvider IList<ServiceDescriptor>

ServiceProvider
+InternalServiceProvider()

IServiceCollection

ServiceCollection

Parameter in Configure()

ServiceDescriptor

ServiceDescriptor
+ Addsingleton()

+ AddTranscient()

+ AddScopped()

ServiceCollectionContainerBuilderExtensions
+ IServiceProviderBuildServiceProvider()

Extension method to get IServiceProvider
instance from ServiceCollection

IOC Containers

66

IServiceCollection

 we can register application services with built-in IoC container in the Configure
method of Startup class by using IServiceCollection. IServiceCollection
interface is an empty interface. It just inherits IList<servicedescriptor>.

 The ServiceCollection class implements IServiceCollection interface.

 So, the services you add in the IServiceCollection type instance, it actually
creates an instance of ServiceDescriptor and adds it to the list.

IServiceProvider

 IServiceProvider includes GetService method.

 The ServiceProvider class implements IServiceProvider interface which returns
registered services with the container. We cannot instantiate ServiceProvider
class because its constructors are marked with internal access modifier.

IOC Containers

67

ServiceCollectionServiceExtensions

 The ServiceCollectionServiceExtensions class includes extension methods related to

service registrations which can be used to add services with lifetime. AddSingleton,

AddTransient, AddScoped extension methods defined in this class.

ServiceCollectionContainerBuilderExtensions

 ServiceCollectionContainerBuilderExtensions class includes BuildServiceProvider

extension method which creates and returns an instance of ServiceProvider.

 There are three ways to get an instance of IServiceProvider:

◦ Using IApplicationBuilder

◦ Using HttpContext

◦ Using IServiceCollection

IOC Containers

68

Using IApplicationBuilder
 We can get the services in Configure method using IApplicationBuilder's

ApplicationServices property as shown below.

public void Configure(IServiceProvider pro, IApplicationBuilder app,
IHostingEnvironment env)

{
var services = app.ApplicationServices;
var logger = services.GetService<ILog>() }
//other code removed for clarity

}

IOC Containers

69

Using HttpContext

var services = HttpContext.RequestServices;

var log = (ILog)services.GetService(typeof(ILog));

Using IServiceCollection

public void ConfigureServices(IServiceCollection services)

{

var serviceProvider = services.BuildServiceProvider();

}

Unit 5

Working with Database

1

Database

 A database is an organized collection of structured information, or data,
typically stored electronically in a computer system.

 A database is usually controlled by a database management system (DBMS).

 The main purpose of the database is to operate a large amount of
information by storing, retrieving, and managing data.

 Data within the most common types of databases in operation today is
typically modeled in rows and columns in a series of tables to make
processing and data querying efficient.

 Most databases use Structured Query Language (SQL) for writing and
querying data

 There are many databases available like SQL Server, Oracle, MySQL,
MongoDB, PostgreSQL, Sybase, Informix, etc.

2

SQL Server

 SQL Server is a relational database management system, or

RDBMS, developed and marketed by Microsoft.

 Similar to other RDBMS software, SQL Server is built on top of

SQL, a standard programming language for interacting with the

relational databases.

 SQL server is tied to Transact-SQL, or T-SQL, the Microsoft’s

implementation of SQL that adds a set of proprietary

programming constructs.

3

Download and Setup SQL Server

 Go to URL: https://www.microsoft.com/en-in/sql-server/sql-

server-downloads

 Download Free Edition of MS SQL Server. Either Developer or

Express Edition

 During installation, remember these:

◦ In Instance Configuration Screen, choose Default Instance

◦ In Database Engine Configuration Screen, choose Mixed Mode(SQL

Server authentication and Windows Authentication) and Enter

Password

◦ Then follow Next Button.
4

https://www.microsoft.com/en-in/sql-server/sql-server-downloads

5

Install SQL Sever Management Studio

 Get SSMS from this url - https://docs.microsoft.com/en-

us/sql/ssms/download-sql-server-management-studio-

ssms?view=sql-server-2017

 Install SSMS

 After install, search Microsoft SQL Server Management Studio and

run

 You will see the screen as shown.

 On Authentication, Select SQL Server Authentication. For User name

enter sa and for password, enter the one that use provide during

installation.
6

https://docs.microsoft.com/en-us/sql/ssms/download-sql-server-management-studio-ssms?view=sql-server-2017

7

ADO.NET Basics

 ADO stands for Microsoft ActiveX Data Objects.

 The ADO.NET is one of the Microsoft’s data access technology which is used to

communicate between the .NET Application (Console, WCF, WPF, Windows,

MVC, Web Form, etc.) and data sources such as SQL Server, Oracle, MySQL, XML

document, etc.

 It has classes and methods to retrieve and manipulate data.

 The following are a few of the .NET applications that use ADO.NET to connect to

a database, execute commands and retrieve data from the database.

◦ ASP.NET Web Applications

◦ Console Applications

◦ Windows Applications.
8

2 Types of Connection Architectures

1. Connected architecture:

◦ the application remains connected with the database
throughout the processing.

2. Disconnected architecture:

◦ the application automatically connects/disconnects during the
processing.

◦ The application uses temporary data on the application side
called a DataSet.

9

Understanding ADO.NET and its class library

10

Dot Net
Applications

Web

Windows

Console

Any Other. . .

ADO. NET

System.Data.SqlClient

System.Data.OracleClient

SQL Server

OleDb

Odbc

Other Data Sources

System.Data.OleDb

Command

 DataReader

DataAdaptor

System.Data.Odbc

Connection

Oracle

Data Set

Important Classes in ADO.NET

1. Connection Class

2. Command Class

3. DataReader Class

4. DataAdaptor Class

5. DataSet Class

Connection Class

 In ADO.NET, we use connection classes to connect to the database.

 These connection classes also manage transactions and connection
pooling.

11

Important Classes in ADO.NET

Command Class

provides methods for storing and executing SQL statements and Stored
Procedures. Various commands that are executed by the Command Class:

a. ExecuteReader:

◦ Returns data to the client as rows.

◦ This would typically be an SQL select statement or a Stored Procedure
that contains one or more select statements. T

◦ this method returns a DataReader object that can be used to fill a
DataTable object or used directly for printing reports and so forth.

12

Important Classes in ADO.NET

DataReader Class

 The DataReader is used to retrieve data.

 It is used in conjunction with the Command class to execute an SQL Select
statement and then access the returned rows.

DataAdapter Class

 The DataAdapter is used to connect DataSets to databases.

 The DataAdapter is most useful when using data-bound controls in
Windows Forms, but it can also be used to provide an easy way to manage
the connection between your application and the underlying database
tables, views and Stored Procedures.

13

Important Classes in ADO.NET

DataSet Class

 The DataSet is essentially a collection of DataTable objects.

 In turn each object contains a collection of DataColumn and
DataRow objects.

 The DataSet also contains a Relations collection that can be used
to define relations among Data Table Objects.

14

Connect to a Database using ADO.NET

• To create a connection, we have to use the connection strings.

• A connection string is required as a parameter to SQLConnection.

• A ConnectionString is a string variable (not case sensitive).

• This contains key and value pairs:Provider, Server, Database, User Id and
Password as in the following:

Server="name of the server or IP Address of the server"
Database="name of the database"
UserId="user name who has permission to work with database"
Password="the password of User Id"

 Example - SQL Authentication

string constr="server=.;database=db1;user id=sa;password=yourpassword";

15

How to connect, retrieve and display data from a database

1. Create a SqlConnection object using a connection string.

2. Handle exceptions.

3. Open the connection.

4. Create a SQLCommand. To represent a SQLCommand like (select * from
studentdetails) and attach the existing connection to it. Specify the type of
SQLCommand (Text/StoredProcedure).

5. Execute the command (use ExecuteReader).

6. Get the Result (use SqlDataReader). This is a forwardonly/readonly data object.

7. Process the result

8. Display the result

9. Close the connection

16

Create a Database in SQL Server

 Create Database using CREATE DATABASE statement

Syntax: CREATE DATABASE database_name;

Ex: CREATE DATABASE TestDb;

• Create Database using Object Explorer

• Right Click the Database, choose New Database

• Enter name for the database as TestDb

• Then OK

17

Create a Table in SQL Server
 Create Table using CREATE TABLE statement

Syntax: CREATE TABLE <Table_Name>
Ex:
CREATE TABLE AddressBook (

ID int PRIMARY KEY IDENTITY (1, 1),
Name varchar(100),
Address varchar(100),
Phone varchar(50)

)

• Create Table using Object Explorer
• Right Click Table, choose New > Table
• Enter Column Name and DataType
• Set Primary Key and Auto Increment for ID Column
• Save Table with name as AddressBook

18

EX Showing Connection, Command

19

EX – Reading Data with SqlDataAdapter & DataSet

20

EX Read Data Using SqlDataReader

21

ASP.Net core 3.1 Crud Pperation with ADO.Net

• Ref Link

https://tutorialshelper.com/asp-net-core-3-1-
crud-operation-with-ado-net/

22

Entity Framework(EF) Core

• Is a new version of Entity Framework after EF 6.x.

• It is open-source, lightweight, extensible and a cross-platform version
of Entity Framework data access technology.

• Entity Framework is an Object/Relational Mapping (O/RM)
framework. It is an enhancement to ADO.NET that gives developers an
automated mechanism for accessing & storing the data in the
database.

• EF Core is intended to be used with .NET Core applications. However,
it can also be used with standard .NET 4.5+ framework based
applications.

23

figure showing supported application types, .NET Frameworks and OSs.

24

Windows,
Mac,
Linux

.NET 4.5+
Applications

Console
winForm

WPF,
ASP.NET

Devices +loT,
Mobile,

PC,
Xbox,

Surface Hub

MobileAppliction
Android, iOS,

Windos

EF Core EF Core

Framework

OS

EF Core EF Core EF Core

.NET Core .NET 4.56+ UWP Xamarine

Windows Windows 10 Mobile

ASP.NET Core
Applications

Web
API,

Console,
etc

Application
Type

EF Core Development Approaches

 EF Core supports two development approaches:

(1) Code-First (2) Database-First.

 EF Core mainly targets the code-first approach and provides some
support for the database-first.

 In the code-first approach, EF Core API creates the database and
tables using migration based on the conventions and configuration
provided in your domain classes. This approach is useful in Domain
Driven Design (DDD).

 In the database-first approach, EF Core API creates the domain and
context classes based on your existing database using EF Core
commands. This has limited support in EF Core as it does not support
visual designer or wizard.

25

EF Core Development Approaches

26

Tables

Context and Entity
Classes

Entity
Framework

Database-First Approach
Generate Data Access Classes for Existing Database

Domain Classes
Entity

Framework Tables

Code-First Apporach Create
Create Database from the Domain Classes

Database

EF Core vs EF 6

• Entity Framework Core is the new and improved version of
Entity Framework for .NET Core applications.

• EF Core continues to support the following features and
concepts, same as EF 6.
• DbContext & DbSet

• Data Model

• Querying using Linq-to-Entities

• Change Tracking

• SaveChanges

• Migrations

27

EF Core vs EF 6

• EF Core includes the following new features which are not supported
in EF 6.x:
1. Easy relationship configuration
2. Batch INSERT, UPDATE, and DELETE operations
3. In-memory provider for testing
4. Support for IoC (Inversion of Control)
5. Unique constraints
6. Shadow properties
7. Alternate keys
8. Global query filter
9. Field mapping
10. DbContext pooling
11. Better patterns for handling disconnected entity graphs

28

EF Core Database Providers

• EF Core uses a provider model to access many different databases.

• EF Core includes providers as NuGet packages which you need to install.

• Below table lists database providers and NuGet packages for EF Core.

29

Database NuGet Package

SQL Server Microsoft.EntityFrameworkCore.SqlServer

MySQL MySql.Data.EntityFrameworkCore

PostgreSQL Npgsql.EntityFrameworkCore.PostgreSQL

SQLite Microsoft.EntityFrameworkCore.SQLite

SQL Compact EntityFrameworkCore.SqlServerCompact40

In-memory Microsoft.EntityFrameworkCore.InMemory

https://www.nuget.org/packages/Microsoft.EntityFrameworkCore.SqlServer
https://www.nuget.org/packages/MySql.Data.EntityFrameworkCore
https://www.nuget.org/packages/Npgsql.EntityFrameworkCore.PostgreSQL
https://www.nuget.org/packages/Microsoft.EntityFrameworkCore.SQLite
https://www.nuget.org/packages/EntityFrameworkCore.SqlServerCompact40
https://www.nuget.org/packages/Microsoft.EntityFrameworkCore.InMemory

EF Core Development Approaches

30

Code First

POCO Entities

Database First

Database

Entity Framework
Core Entity Framework

Core

Database POCO Entities

EF Core Code First Approach

• In the EF Core Code First Approach, first, we need to create our application
domain classes such as Student, Branch, Address, etc. and a special class
that derives from Entity Framework DbContext class.

• Then based on the application domain classes and DBContext class, the EF
Core creates the database and related tables.

31

Data BaseEF Core
Domain Classes
and DBContext

Class

Code First Approach
Creates Databases from the Domain Classess

EF Core Code First Approach

• In the code-first approach, the EF Core creates the database and tables using
migration based on the default conventions and configuration. This approach is
useful in Domain-Driven Design (DDD).

• Good option if you don't know the whole picture of your database as you can
just update your Plain Old Class Object (POCO) entities and let EF sync changes to
the database. In other words, you can easily add or remove features defined in
your class without worrying about syncing your database using Migrations.

• You don't have to worry about your database as EF will handle the creation for
you. In essence, database is just a storage medium with no logic.

• You will have full control over the code. You simply define and create POCO
entities and let EF generate the corresponding Database for you. The downside is
if you change something in your database manually, you will probably lose them
because your code defines the database.

• It's easy to modify and maintain as there will be no auto-generated code.
32

Object Relational Mappers

• Essential parts of an ASP.NET MVC application is the architectural design.
It’s the Model-View-Controller (MVC) pattern. It show us the view of the
application and the business logic within the application.

• Model : designed to manage the business logic.

• View : view that user can see.

• Controller : manages the interaction between Model and View.

• A one of basic end point of project is the Database. We can prepare the
database following many methods. The thing is, we have to access the DB
from the next layer (Controller). In that point, object relational
mapper(ORM) will come to the battle.

33

Object Relational Mappers

• An ORM is an application or system that support in the conversion of data
within a relational database management system (RDBMS) and the object
model that is necessary for use within object-oriented programming.

34

Convert Convert

Database (RDBMS) ORM Object Model

ADDING EF CORE TO AN APPLICATION

Install Entity Framework Core

• Entity Framework Core can be used with .NET Core or .NET 4.6 based
applications. Here, you will learn to install and use Entity Framework Core
.NET Core applications

• EF Core is not a part of .NET Core and standard .NET framework. It is
available as a NuGet package.

• You need to install NuGet packages for the following two things to use EF
Core in your application:

• 1. EF Core DB provider

• 2. EF Core tools

35

ADDING EF CORE TO AN APPLICATION

Install EF Core DB Provider

 EF Core allows us to access databases via the provider model. There are different
EF Core DB providers available for the different databases. These providers are
available as NuGet packages.

 First, install the NuGet package for the provider of database you want to access.

 For, MS SQL Server database,
install Microsoft.EntityFrameworkCore.SqlServer NuGet package.

 To Install DB provider NuGet package:

◦ Right click on the project in the Solution Explorer in Visual Studio

◦ select Manage NuGet Packages.. (or select on the menu: Tools -> NuGet Package Manager ->

Manage NuGet Packages For Solution).

◦ search for Microsoft.EntityFrameworkCore.SqlServer and install

36

ADDING EF CORE TO AN APPLICATION

Install EF Core Tools

 Along with the DB provider package, you also need to install EF tools to
execute EF Core commands. These make it easier to perform several EF
Core-related tasks in your project at design time, such as migrations,
scaffolding, etc.

 EF Tools are available as NuGet packages.

 To Install EF Core Tools:

◦ Right click on the project in the Solution Explorer in Visual Studio

◦ select Manage NuGet Packages.. (or select on the menu: Tools -> NuGet Package

Manager -> Manage NuGet Packages For Solution).

◦ search for Microsoft.EntityFrameworkCore.Tools and install

37

Data Models

 Entity Framework needs to have a model (Entity Data Model) to
communicate with the underlying database. It builds a model based on the
shape of your domain classes, the Data Annotations and Fluent API
configurations.

 The EF model includes three parts: conceptual model, storage model, and
mapping between the conceptual and storage models.

 In the code-first approach, EF builds the conceptual model based on your
domain classes (entity classes), the context class and configurations.

 EF Core builds the storage model and mappings based on the provider you
use. EF uses this model for CRUD (Create, Read, Update, Delete) operations
to the underlying database.

38

Data Context

 The DbContext class is an integral part of Entity Framework. An instance
of DbContext represents a session with the database which can be used to query
and save instances of your entities to a database.

 DbContext is a combination of the Unit Of Work and Repository patterns.

 DbContext in EF Core allows us to perform following tasks:

◦ Manage database connection

◦ Configure model & relationship

◦ Querying database

◦ Saving data to the database

◦ Configure change tracking

◦ Caching

◦ Transaction management
39

Create Database From Model Using Entity Framework
Core And ASP.NET Core

1. Add these two NuGet packages

to the project:

 EntityFrameworkCore.SqlServer

 Microsoft.EntityFrameworkCore.Tools

2. In Models Folder Create a Class

with Name as WebUser and add

these lines of Codes

40

Create Database From Model Using Entity Framework
Core And ASP.NET Core

3. In Models Folder Create a custom DbContext class named AppDbContext
and write the following code.

41

Create Database From Model Using Entity Framework
Core And ASP.NET Core

3. Build your project

4. Open the appsettings.json file and Add Database Connection string:

"ConnectionStrings": {

"DBConnectionString": "Data Source=.; Initial Catalog=DotNetCoreDBS; User Id=sa;
Password =123456"

}

42

Create Database From Model Using Entity Framework
Core And ASP.NET Core

5. open the Startup class and add this code to the ConfigureServices()
method.
public void ConfigureServices(IServiceCollection services)

{

services.AddControllersWithViews();

services.AddDbContext<AppDbContext>(o =>
o.UseSqlServer(Configuration.GetConnectionString("DBConnectionString")));

}

The above code uses AddDbContext() method to register AppDbContext. Notice that the
database connection string stored in the appsettings.json file is supplied to the
UseSqlServer() method.

43

Create Database From Model Using Entity Framework
Core And ASP.NET Core

6. Create Database using EnsureCreated() method
- EF Core model is ready, let's try to create the required database using EnsureCreated()

method. This technique is a code based technique and works great for quick and simple
database creation scenarios. If database is already exists, then no action is taken,
otherwise database is created.

- Add following marked as bold in Configure Method
public void Configure(IApplicationBuilder app, IWebHostEnvironment env, AppDbContext db)

{

.

db.Database.EnsureCreated();

app.UseStaticFiles();

app.UseRouting();

app.UseAuthorization();

}

44

CRUD Operation Using Entity Framework Core

Create MVC Controller with views, using Entity Framework

- Right-click on the controller folder, select add new item, and then
select controller. Then this dialog will be displayed.

45

CRUD Operation Using Entity Framework Core

Create MVC Controller with views, using Entity Framework
- Enter for Model Class, Data context class, Controller name as shown

- Tick Views as shown

46

CRUD Operation Using Entity Framework Core

 Review your generated code in controller and view pages

 Load your controller in your browser

◦ https://localhost:44347/WebUsers

◦ https://localhost:44347/WebUsers/Create

 Click on Edit, Details and Delete

47

Unit 6

State Management on ASP.NET Core Application

1

STATE MANAGEMENT ON STATELESS HTTP

 HTTP is a stateless protocol. So, HTTP requests are independent messages that don’t retain user

values or app states. We need to take additional steps to manage state between the requests.

 State can be managed in our application using several approaches.

2

Storage Approach Description

Cookies HTTP cookies. May include data stored using server-side app code.

Session state HTTP cookies and server-side app code

TempData HTTP cookies or session state

Query strings HTTP query strings

Hidden fields HTTP form fields

HttpContext Server-side app code

Cache Cache Server-side app code

SERVER-SIDE STRATEGIES: SESSION STATE, TEMPDATA,
USING HTTPCONTEXT

Session State

 Session state is an ASP.NET Core mechanism to store user data while the
user browses the application.

 It uses a store maintained by the application to persist data across
requests from a client. We should store critical application data in the
user’s database and we should cache it in a session only as a performance
optimization if required.

 ASP.NET Core maintains the session state by providing a cookie to the
client that contains a session ID. The browser sends this cookie to the
application with each request. The application uses the session ID to fetch
the session data.

3

SESSION STATE

While working with the Session state, we should keep the following things in mind:

 A Session cookie is specific to the browser session

 When a browser session ends, it deletes the session cookie

 If the application receives a cookie for an expired session, it creates a new

session that uses the same session cookie

 An Application doesn’t retain empty sessions

 The application retains a session for a limited time after the last request. The

app either sets the session timeout or uses the default value of 20 minutes

 Session state is ideal for storing user data that are specific to a particular session

but doesn’t require permanent storage across sessions

4

A Session State Example

 We need to configure the session state before using it in our

application. This can be done in the ConfigureServices() method

in the Startup.cs class:

services.AddSession();

 The order of configuration is important and we should invoke the

UseSession() before invoking UseMVC().

 Let’s create a controller with endpoints to set and read a value

from the session:

5

public class WelcomeController : Controller {

public IActionResult Index()

{

HttpContext.Session.SetString("Name", "John");

HttpContext.Session.SetInt32("Age", 32);

return View();

}

public IActionResult Get() {

User u = new User()

{

Name = HttpContext.Session.GetString("Name"),

Age = HttpContext.Session.GetInt32("Age").Value

};

return View(u);

}

}
6

A Session State Example

 The Index() method sets the values into session and Get()

method reads the values from the session and passes them into

the view.

 Let’s auto-generate a view to display the model values by right-

clicking on the Get() method and using the “Add View” option.

 Now let’s run the application and navigate to /welcome.

 This will set the session values.

 Now let’s navigate to /welcome/get:

7

TempData

 TempData property which can be used to store data until it is read.

 TempData is particularly useful when we require the data for more

than a single request. We can access them from controllers and

views.

 TempData is implemented by TempData providers using either

cookies or session state.

 Let’s create a controller with three endpoints. In the First() method,

let’s set a value into TempData. Then let’s try to read it

in Second() and Third() methods:
8

public class TempDataController : Controller {

public IActionResult First() {

TempData["UserId"] = 101;

return View();

}

public IActionResult Second() {

var userId = TempData["UserId"] ?? null;

return View();

}

public IActionResult Third() {

var userId = TempData["UserId"] ?? null;

return View();

}

}
9

TempData

 Now let’s run the application by placing breakpoints in the

Second() and Third() methods.

 We can see that the TempData is set in the First() request and

when we try to access it in the Second() method, it is available.

But when we try to access it in the Third() method, it is

unavailable as is retains its value only till its read.

 Now let’s move the code to access TempData from the controller

methods to the views.

10

Let’s create a view for the Second() action method:

@{

ViewData["Title"] = "Second";

var userId = TempData["UserId"].ToString();

}

<h1>Second</h1>

User Id : @userId

Similarly, let’s create a view for the Third() action method:

@{

ViewData["Title"] = "Third";

var userId= TempData["UserId"].ToString();

}

<h1>Third</h1>

User Id : @userId

Let’s run the application and navigate to /first, /second and /third

11

 We can see that TempData is available when we read it for the first time and then it
loses its value. Now, what if we need to persist the value of TempData even after
we read it?

 We have two ways to do that:

◦ TempData.Keep()/TempData.Keep(string key): This method retains the value corresponding
to the key passed in TempData. If no key is passed, it retains all values in TempData.

◦ TempData.Peek(string key): This method gets the value of the passed key from TempData
and retains it for the next request.

 Let’s slightly modify our second view with one of these methods:

var userId = TempData["UserId"].ToString();

TempData.Keep();

// OR

var userId = TempData.Peek("UserId").ToString();

 Now let’s run the application and navigate to /first, /second and /third.

 We can see that the TempData value persists in the third page even after its read on
the second page.

12

Using HttpContext

 A HttpContext object holds information about the current HTTP

request. The important point is, whenever we make a new HTTP

request or response then the Httpcontext object is created. Each time

it is created it creates a server current state of a HTTP request and

response.

 It can hold information like: Request, Response, Server, Session, Item,

Cache, User's information like authentication and authorization and

much more.

 As the request is created in each HTTP request, it ends too after the

finish of each HTTP request or response.
13

Example to Check request processing time using
HttpContext class

 This example check the uses of the HttpContext class. In the global.aspx page

we know that a BeginRequest() and EndRequest() is executed every time

before any Http request. In those events we will set a value to the context

object and will detect the request processing time.

protected void Application_BeginRequest(object sender, EventArgs e) {

HttpContext.Current.Items.Add("Begintime", DateTime.Now.ToLongTimeString());

}

protected void Application_EndRequest(object sender, EventArgs e) {

TimeSpan diff = Convert.ToDateTime(DateTime.Now.ToLongTimeString()) -

Convert.ToDateTime(HttpContext.Current.Items["Begintime"].ToString());

}

14

Example to access current information using
HttpContext class

protected void Page_Load(object sender, EventArgs e) {

Response.Write("Request URL"+ HttpContext.Current.Request.Url)

Response.Write("Number of Session variable" +

HttpContext.Current.Session.Count);

Response.Write("current Timestamp" + HttpContext.Current.Timestamp);

Response.Write("Object in Application level " +

HttpContext.Current.Application.Count);

Response.Write("Is Debug Enable in current Mode?" +

HttpContext.Current.IsDebuggingEnabled);

}

15

CACHE CLIENT-SIDE STRATEGIES

 COOKIES,

 QUERY STRINGS,

 HIDDEN FIELDS

16

Cookies

Reading Cookie
//read cookie from IHttpContext Accessor

string cookieValueFromContext =

httpContextAccessor.HttpContext.Request.Cookies["key"];

//read cookie from Request object

string cookieValueFromReq = Request.Cookies[“key"];

Remove Cookie

Response.Cookies.Delete(key);

17

Cookies

Writing cookie

 In this example, SetCookie method show how to write cookies.

 CookieOption is available to extend the cookie behavior.

public void SetCookie(string key, string value, int? expireTime) {

CookieOptions option = new CookieOptions();

if (expireTime.HasValue)

option.Expires = DateTime.Now.AddMinutes(expireTime.Value);

else

option.Expires = DateTime.Now.AddMilliseconds(10);

Response.Cookies.Append(key, value, option);

}

18

Query strings

 We can pass a limited amount of data from one request to another by adding it to
the query string of the new request. This is useful for capturing the state in a
persistent manner and allows the sharing of links with the embedded state.

public IActionResult GetQueryString(string name, int age) {

User newUser = new User()

{

Name = name,

Age = age

};

return View(newUser);

}

19

Query strings

 Now let’s invoke this method by passing query string parameters:

 /welcome/getquerystring?name=John&age=31

20

Query strings

 We can retrieve both the name and age values from the query string and

display it on the page.

 As URL query strings are public, we should never use query strings for

sensitive data.

 In addition to unintended sharing, including data in query strings will make

our application vulnerable to Cross-Site Request Forgery (CSRF) attacks,

which can trick users into visiting malicious sites while authenticated.

Attackers can then steal user data or take malicious actions on behalf of the

user.

21

Hidden Fields

 We can save data in hidden form fields and send back in the next request.

 Sometimes we require some data to be stored on the client side without

displaying it on the page. Later when the user takes some action, we’ll need

that data to be passed on to the server side. This is a common scenario in

many applications and hidden fields provide a good solution for this.

 Let’s add two methods in our WelcomeController:

22

[HttpGet]

public IActionResult SetHiddenFieldValue() {

User newUser = new User() {

Id = 101, Name = "John", Age = 31

};

return View(newUser);

}

[HttpPost]

public IActionResult SetHiddenFieldValue(IFormCollection keyValues) {

var id = keyValues["Id"];

return View();

}
23

Hidden Fields

 The GET version of theSetHiddenValue() method creates a user object and passes

that into the view.

 We use the POST version of the SetHiddenValue() method to read the value of a

hidden field Id from FormCollection.

 In the View, we can create a hidden field and bind the Id value from Model:

◦ @Html.HiddenFor(model =>model.Id)

 Then we can use a submit button to submit the form:

◦ <input type="submit" value="Submit" />

 Now let’s run the application and navigate to /Welcome/SetHiddenFieldValue
24

Hidden Fields

25

Hidden Fields

 On inspecting the page source, we can see that a hidden field is generated on the page

with the Id as the value: <input id="Id" name="Id" type="hidden" value="101">

 Now click the submit button after putting a breakpoint in the POST method. We can

retrieve the Id value from the FormCollection

 Since the client can potentially tamper with the data, our application must always

revalidate the data stored in hidden fields.

26

Discussion Exercise

1. Write about the State Management Strategies.

2. What is Session State? Show with an example to manage session state in

ASP.NET Core.

3. Show the difference between TempData and Using HttpContext with suitable

example.

4. How do you manage to handle state with client side strategies?

27

Unit 7

Client-Side Development in ASP.NET Core

1

COMMON CLIENT-SIDE WEB TECHNOLOGIES

 ASP.NET Core applications are web applications and they typically rely

on client-side web technologies like HTML, CSS, and JavaScript.

 By separating the content of the page (the HTML) from its layout and

styling (the CSS), and its behavior (via JavaScript), complex web apps

can leverage the Separation of Concerns principle.

 While HTML and CSS are relatively stable, JavaScript, by means of the

application frameworks and utilities developers work with to build

web-based applications.

 We will discuss on JavaScript, jQuery, Angular SPA, React, Vue.
2

Javascript

 JavaScript is a dynamic, interpreted programming language of the web.

 Just like CSS, it's recommended to organize JavaScript into separate files, keeping it separated

as much as possible from the HTML found on individual web pages or application views.

 With Javascript, we can perform following:

◦ Selecting an HTML element and retrieving and/or updating its value.

◦ Decision Making, complex calculations, Validate Data, Animate and Add Effects

◦ Interaction with properties of page object

◦ React to events

◦ Querying a Web API for data.

◦ Sending a command to a Web API (and responding to a callback with its result).

◦ Performing validation.

3

Quick Example Review on Javascript

Example

<HTML>

<TITLE> Displaying Text </TITLE>

<BODY>

<script>

document.write(“<h1> Hello Good Day </H1>”);

document.write(“<H3> Best of Luck. </H3>”);

alert(“Hello”);

</script>

</BODY>

</HTML>

4

Example2

<script type="text/javascript">

s1=12;

s2=28;

sum=s1+s2;

diff=s1-s2;

mult=s1*s2;

div=s1/s2;

document.write("
Sum: "+sum);

document.write("
Difference: "+diff);

document.write("
Multiply: "+mult);

document.write("
Division: "+div);

</script >

5

Example3 – JavaScript Array

<script>

var sports = new Array("Football", "Tennis", "Cycling”);

document.write(sports[0]);

document.write(sports[1]);

document.write(sports[2]);

var count = sports.length;

// loop through array elements

for(i=0; i< count; i++)

{

document.write("
Index " + i + " is " + sports[i]);

}

</script>

6

Example 4 – JavaScript String

 Used for storing and manipulating text

 Zero or more characters within quotes.

/* String : J a v a s c r i p t

Index : 0 1 2 3 4 5 6 7 8 9 */

var myText = "Javascript";

document.write("
" + myText.length);

document.write("
" + myText.charAt(4));

document.write("
" + myText.indexOf("va"));

document.write("
" + myText.substr(0,4));

document.write("
" + myText.toUpperCase());

document.write("
" + myText.toLowerCase());

7

Example 5 – JavaScript Function

<script>

// function defination

function callme() {

alert("Hello there");

}

function f3(n1, n2) {

var sum = n1 + n2;

return sum;

}

callme(); // calling a function

callme();

var returned_sum = f3(10, 20);

document.write(returned_sum);

document.write(f3(20, 30));

</script>

8

Example 5 – JavaScript Date

<html>

<body>

<h1>Demo: Current Date</h1>

<p id="p1"></p>

<p id="p2"></p>

<script>

document.getElementById("p1").innerHTML = Date();

var currentDate = new Date();

document.getElementById("p2").innerHTML = currentDate;

</script>

</body>

</html>

9

Javascript Events

 Interaction with HTML page and HTML elements is handled through events.

Events can be page loads, button click, pressing a key, select data in form

controls, focus on control, mouse over and mouse out on any element, etc.

 Events are a part of the Document Object Model (DOM) and every HTML

element contains a set of events which can trigger JavaScript Code.

 We can categories Javascript events on:

◦ Document Level Events - onload, onunload

◦ Form Level Events - Onsubmit, Onreset,Onchange, onselect, onblur, onfocus

◦ Keyboard Events - Onkeydown, onkeypress, onkeyup

◦ Mouse Events - Onclick, ondblclick, onmouseover, onmouseout

10

Events –Example

<html>

<head>

<script>

function callme() {

alert("Hello");

document.write("Hello");

}

</script>

</head>

<body>

<form>

<input type = "button" onclick = "callme()" value = "Click Me">

</form>

</body>

</html>

11

Events –Example

<html>

<head>

<script type="text/javascript">

function over() {

alert("Mouse Over");

}

function out() {

alert("Mouse Out");

}

</script>

</head>

<body>

<div onmouseover="over()" onmouseout="out()">

<h2> This is inside the division </h2>

</div>

</body>

</html>

12

HTML DOM

 When a web page is loaded, browser creates a Document Object

Model of the page. With the object model, JavaScript can do

following:

◦ modify all the HTML elements and attributes in the

◦ change all the CSS styles in the page

◦ Add remove existing HTML elements and attributes

◦ add new HTML elements and attributes

◦ react to all existing HTML events in the page

◦ create new HTML events in the page
13

14

Document

Root element
<html>

Element
<head>

Element
<Body>

Element
<title>

Text:
"My title"

Attribute:
"href"

Element:
"a"

Element:
"h1"

Text:
"My link"

Text:
"My header"

The HTML DOMmodel is constructed as a tree of Objects:

 In the DOM, all HTML elements are defined as objects. Below example

changes the content (the innerHTML) of the <p> element with id="demo“

and getElementById is a method and innerHTML is a property

<body>

<p id="demo"></p>

<script>

document.getElementById("demo").innerHTML = "Hello World!";

</script>

</body>

15

Method Description

document.getElementById(id) Find an element by element id

document.getElementsByTagName(name) Find elements by tag name

document.getElementsByclassName(name) Find elements by class name
16

Property Description

element.innerHTML = new htm content Change the inner HTML of an element

element.attribute = new value Change the attribute value of an HTML element

element.style.property = new style Change the style an HTML element

Method Description

element.setAttribute(attribute, value) Change the attribute of an HTML element

Changing HTML Elements

Finding HTML Elements

17

Adding and Deleting Elements

Method Description

document.createElement(element) Create an HTML element

document.removeChild(element) Remove an HTML element

document.appendChild(element) Add an HTML element

document.replaceChild(new, old) Replace an HTML element

document.write(text) Write into the HTML output stream

EXAMPLE

<html>

<head>

<script>

var btn = document.querySelector('button');

function random(number) {

return Math.floor(Math.random() * (number+1));

}

function changeBgColor() {

var rCol = 'rgb(' + random(255) + ',' + random(255) + ',' + random(255) + ') ';

document.body.style.backgroundColor = rCol;

}

</script>

</head>

<body>

<button onclick= "changeBgColor()">Change color</button>

</body>

</html>

18

Form Validation

 JavaScript provides a way to validate form's data on the client's
computer before sending it to the web server.

 Form validation generally performs two functions.

◦ Basic Validation − check all the mandatory fields are filled in.

◦ Data Format Validation − data entered checked for correct form and
value with appropriate logic to test correctness of data.

19

<html> <head> <title>Form Validation</title>

<script type = "text/javascript">

<!-- // Form validation code will come here. //-->

</script></head>

<body>

<form action = "next_page" name = "myForm" onsubmit = "return(validate());">

<table cellspacing = "2" cellpadding = "2" border = "1">

<tr> <td align = "right">Name</td> <td><input type = "text" name = "Name" /></td> </tr>

<tr> <td align = "right">EMail</td> <td><input type = "text" name = "EMail" /></td> </tr>

<tr> <td align = "right">Zip Code</td> <td><input type = "text" name = "Zip" /></td> </tr>

<tr> <td align = "right">Country</td> <td>

<select name = "Country">

<option value = "1">USA</option>

<option value = "2">UK</option>

<option value = "3">Nepal</option>

</select>

</td> </tr>

<tr> <td align = "right"></td> <td><input type = "submit" value = "Submit" /></td> </tr>

</table>

</form> </body> </html> 20

<script type = "text/javascript">

function validate() {

if(document.myForm.Name.value == "") {

alert("Please provide your name!"); document.myForm.Name.focus() ; return false;

}

if(document.myForm.EMail.value == "") {

alert("Please provide your Email!"); document.myForm.EMail.focus() ; return false;

}

if(document.myForm.Zip.value == "" || isNaN(document.myForm.Zip.value) ||

document.myForm.Zip.value.length != 5) {

alert("Please provide a zip in the format #####."); document.myForm.Zip.focus() ; return false;

}

if(document.myForm.Country.value == "-1") {

alert("Please provide your country!"); return false;

}

return(true);

}

</script> 21

jQuery

 jQuery is a fast, small and feature-rich JavaScript library included in a

single .js file.

 It provides many built-in functions using which developers can

accomplish various tasks easily and quickly.

 Some of the jQuery important features are:

◦ DOM Selection: jQuery provides Selectors to retrieve DOM element based on

different criteria like tag name, id, css class name, attribute name, value, nth

child in hierarchy etc.

◦ DOM Manipulation: You can manipulate DOM elements using various built-in

jQuery functions. For example, adding or removing elements, modifying html

content, css class etc.
22

jQuery

 Some of the jQuery important features are:

◦ Special Effects: You can apply special effects to DOM elements like show or

hide elements, fade-in or fade-out of visibility, sliding effect, animation etc.

◦ Events: jQuery library includes functions which are equivalent to DOM events

like click, dblclick, mouseenter, mouseleave, blur, keyup, keydown etc. These

functions automatically handle cross-browser issues.

◦ Ajax: jQuery also includes easy to use AJAX functions to load data from servers

without reloading whole page.

◦ Cross-browser support: jQuery library automatically handles cross-browser

issues, so the user does not have to worry about it.

23

Advantages of jQuery

 Easy to learn: jQuery is easy to learn because it supports same JavaScript

style coding.

 Write less do more: jQuery provides a rich set of features that increase

developers' productivity by writing less and readable code.

 Excellent API Documentation: jQuery provides excellent online API

documentation.

 Cross-browser support: jQuery provides excellent cross-browser support

without writing extra code.

 Unobtrusive: jQuery is unobtrusive which allows separation of concerns by

separating html and jQuery code.
24

Getting Started with jQuery

 You can start writing jQuery code on any of the editor like notepad, SublimeText,
Visual Studio. it's time to use jQuery.

 There are several ways to start using jQuery on your web site. You can:

◦ Download the jQuery library from jQuery.com

◦ Include jQuery from a CDN, like Google

 There are two versions of jQuery available for downloading:

◦ Production version - this is for your live website because it has been minified and
compressed

◦ Development version - this is for testing and development (uncompressed and
readable code)

 The jQuery library is a single JavaScript file, and you reference it with the HTML
<script> tag (notice that the <script> tag should be inside the <head> section)

25

Getting Started with jQuery

<head>

<script src="jquery-3.5.1.min.js"></script>

</head>

If you don't want to download and host jQuery yourself, you can include it from a CDN (Content

Delivery Network).

<script src="https://ajax.googleapis.com/ajax/libs/jquery/3.5.1/jquery.min.js">

</script>

jQuery Syntax

 The jQuery syntax is used to select HTML elements and perform some action on those

element(s). Basic syntax is: $(selector).action()

• A $ sign to define/access jQuery

• A (selector) to "query (or find)" HTML elements

• A jQuery action() to be performed on the element(s)
26

Examples:

$(this).hide() - hides the current element.

$("p").hide() - hides all <p> elements.

$(".test").hide() - hides all elements with class="test".

$("#test").hide() - hides the element with id="test".

The Document Ready Event

All jQuery methods in are inside a document ready event.

$(document).ready(function(){

// jQuery methods go here...

});

27

Example: jQuery Element Selector to hide all paragraphs
<html>

<head>

<script src="https://ajax.googleapis.com/ajax/libs/jquery/3.5.1/jquery.min.js"></script>

<script>

$(document).ready(function(){

$("button").click(function(){

$("p").hide();

});

});

</script>

</head>

<body>

<h2>This is a heading</h2>

<p>This is a paragraph.</p>

<p>This is another paragraph.</p>

<button>Click me to hide paragraphs</button>

</body>

</html>

28

Example: Using id Selector - with id=test will be hidden on button click

$(document).ready(function(){

$("button").click(function(){

$("#test").hide();

});

});

Example: Using .class Selector with class=test will be hidden on button click

$(document).ready(function(){

$("button").click(function(){

$(".test").hide();

});

});

29

More Examples of jQuery Selectors

30

Syntax Description

$(this) Current HTML element

$("p") All <p> elements

$("p.intro") All <p> elements with class="intro"

$(".intro") All elements with class="intro"

$("#intro") The first element with id="intro"

$("ul li:first") The first element of each

$("[href$='.jpg']") All elements with an href attribute that ends with ".jpg"

$("div#intro .head") All elements with class="head" inside a <div> element with

id="intro"

jQuery Events

31

Mouse Events Keyboard Events Form Events Document/Window

Events

click keypress submit load

dblclick keydown change resize

mousenter keyup focus scroll

mouseleave blur unload

 An event represents the precise moment when something happens.

 An event can be moving a mouse over an element, selecting a radio button,
clicking on an element, etc

 The term "fires/fired" is often used with events. Example: "The keypress event is
fired, the moment you press a key".

 Here are some common DOM events:

jQuery Syntax for Events

32

Event Method Description

$(selector).click(function) Invokes a function when the selected elements are clicked

$(selector).dblclick(function) Invokes a function when the selected elements are

double-clicked

$(selector).focus(function) Invokes a function when the selected elements receive the

focus

$(selector).mouseover(function

)

Invokes a function when the mouse is over the selected

elements

$(selector).keypress(function) Invokes a function when a key is pressed inside the

selected elements

jQuery Event Methods
Example: jQuery Event Methods

$(document).ready(function(){

$("p").click(function(){

$(this).hide();

});

$("p").dblclick(function(){

$(this).hide();

});

$("#id1").hover(function(){

alert("You hover on id1").

});

});

33

jQuery Effects

34

Event Method Description

$(selector).hide() Hide selected elements

$(selector).show() Show selected elements

$(selector).toggle() Toggle (between hide and show) selected elements

$(selector).slideDown() Slide-down (show) selected elements

$(selector).slideUp() Slide-up (hide) selected elements

$(selector).slideToggle() Toggle slide-up and slide-down of selected elements

$(selector).fadeIn() Fade in selected elements

$(selector).fadeOut() Fade out selected elements

$(selector).fadeTo() Fade out selected elements to a given opacity

$(selector).fadeToggle() Toggle between fade in and fade out

jQuery Effects

EX – Fade Paragraph id1 with 50% opacity when btnFade is clicked

<script>

$("#btnFade").click(function(){

$("#id1").fadeTo("slow", 0.5);

});

</script>

35

LEGACY WEB APPS WITH JQUERY
 Although ancient by JavaScript framework standards, jQuery continues to be a

commonly used library for working with HTML/CSS and building applications that make
AJAX calls to web APIs.

 However, jQuery operates at the level of the browser document object model (DOM),
and by default offers only an imperative, rather than declarative, model.

 For example, imagine that if a textbox's value exceeds 10, an element on the page
should be made visible. In jQuery, this would typically be implemented by writing an
event handler with code that would inspect the textbox's value and set the visibility of
the target element.

 This is an imperative, code-based approach. Another framework might instead use
databinding to bind the visibility of the element to the value of the textbox declaratively.

 As client-side behaviors grow more complex, data binding approaches frequently result
in simpler solutions with less code and conditional complexity

36

jQuery vs a SPA Framework

37

 Most of the features jQuery lacks intrinsically can be added with the addition of other
libraries. SPA framework like Angular provides these features in a more integrated
fashion, since it's been designed with all of them in mind from the start.

 Also, jQuery is an imperative library, meaning that you need to call jQuery functions in
order to do anything with jQuery. Much of the work and functionality that SPA
frameworks provide can be done declaratively, requiring no actual code to be written.

 Data binding is a great example of this. In jQuery, it usually only takes one line of code
to get the value of a DOM element or to set an element's value. However, you have to
write this code anytime you need to change the value of the element, and sometimes
this will occur in multiple functions on a page.

 Another common example is element visibility. In jQuery, there might be many different
places where you'd write code to control whether certain elements were visible. In each
of these cases, when using data binding, no code would need to be written. You'd
simply bind the value or visibility of the elements in question to a viewmodel on the
page, and changes to that viewmodel would automatically be reflected in the bound
elements.

38

Angular SPAs

 Angular remains one of the world's most popular JavaScript frameworks. The redesigned
Angular continues to be a robust framework for building Single Page Applications.

 Angular applications are built from components. Components combine HTML templates
with special objects and control a portion of the page. A simple component from
Angular's docs is shown here:

import{ Component } from '@angular/core';

@Component({

selector: 'my-app',

template: '<h1>Hello {{name}}</h1>'

})

export class AppComponent{ name = 'Angular'; }
39

Angular SPAs

 Components are defined using the @Component decorator function, which takes
in metadata about the component. The selector property identifies the ID of the
element on the page where this component will be displayed.

 The template property is a simple HTML template that includes a placeholder
that corresponds to the component's name property, defined on the last line.

◦ Import { Component } from '@angular/core’;

 By working with components and templates, instead of DOM elements, Angular
apps can operate at a higher level of abstraction and with less overall code than
apps written using just JavaScript (also called "vanilla JS") or with jQuery.

 Angular also imposes some order on how you organize your client-side script
files.

40

Getting Started with Angular

 AngularJS is a client side JavaScript MVC framework to develop a dynamic web
application. AngularJS was originally started as a project in Google but now, it is open
source framework. AngularJS is entirely based on HTML and JavaScript, so there is no
need to learn another syntax or language.

 AngularJS changes static HTML to dynamic HTML. It extends the ability of HTML by
adding built-in attributes and components and also provides an ability to create custom
attributes using simple JavaScript.

 We need the following tools to setup a development environment for AngularJS:

1. AngularJS Library – download from angularjs.org

2. Editor/IDE – notepad++, SublimeText, Visual Studio & others

3. Web server – IIS, Apache, etc

4. Browser
41

Advantages of AngularJS

 Open source JavaScript MVC framework.

 Supported by Google

 No need to learn another scripting language. It's just pure JavaScript and HTML.

 Supports separation of concerns by using MVC design pattern.

 Built-in attributes (directives) makes HTML dynamic.

 Easy to extend and customize.

 Supports Single Page Application.

 Uses Dependency Injection.

 Easy to Unit test.

 REST friendly.

42

See this example with jQuery
<!DOCTYPE html>

<html>

<head>

<script src="~/Scripts/jquery-1.10.2.min.js"></script>

</head>

<body>

Enter Your Name: <input type="text" id="txtName" />

Hello <label id="lblName"></label>

<script>

$(document).ready(function () {

$('#txtName').keyup(function () {

$('#lblName').text($('#txtName').val());

});

});

</script>

</body>

</html>
43

Example

 Conversion of above jQuery program to Angular Code to shows plain HTML code with

couple of AngularJS directives (attributes) such as ng-app, ng-model, and ng-bind.

<!DOCTYPE html>

<html>

<head>

<script src="~/Scripts/angular.js"></script>

</head>

<body ng-app>

Enter Your Name: <input type="text" ng-model="name" />

Hello <label ng-bind="name"></label>

</body>

</html>

44

Setup angularjs application in Visual Studio 2019

 Open visual studio create angularjs project name like “angularJsApp”

45

Setup angularjs application in Visual Studio 2019

 Select an empty project and then click on ok button

46

Setup angularjs application in Visual Studio 2019

 Right-click on your project select Manage NuGet packages

47

Setup angularjs application in Visual Studio 2019

 Browse the angularjs.core and install

48

Setup angularjs application in Visual Studio 2019

 Once installed the angularjs you will have js file in a script folder

49

Setup angularjs application in Visual Studio 2019

 Setup is done. Now let’s test by using one sample example. Create a

directory structure for angularJs application following the below image.

50

App.js var app = angular.module('myapp', []);

TestController.js

Test.html

51

REACT

 Unlike Angular, which offers a full Model-View-Controller pattern implementation, React

is only concerned with views. It's not a framework, just a library. There are a number of

libraries that are designed to be used with React to produce rich single page

applications.

 One of React's most important features is its use of a virtual DOM. The virtual DOM

provides React with several advantages, including performance (the virtual DOM can

optimize which parts of the actual DOM need to be updated) and testability (no need to

have a browser to test React and its interactions with its virtual DOM).

 Rather than having a strict separation between code and markup (with references to

JavaScript appearing in HTML attributes perhaps), React adds HTML directly within its

JavaScript code as JSX. JSX is HTML-like syntax that can compile down to pure JavaScript.
52

REACT

 For Example

{ authors.map(author =>

<li key={author.id}>{author.name}

)}

 Because React isn't a full framework, you'll typically want other libraries to handle things

like routing, web API calls, and dependency management. The nice thing is, you can pick

the best library for each of these.

53

Create a Node.js and React app in Visual Studio

Prerequisites

 Visual Studio installed and the Node.js development workload.

 If you need to install the workload but already have Visual Studio, go to Tools >

Get Tools and Features..., which opens the Visual Studio Installer. Choose the

Node.js development workload, then choose Modify.

54

Create a Node.js and React app in Visual Studio

Create a Node.js Web Application Project

1. Open Visual Studio.

2. Create a new project.

 Press Esc to close the start window. Type Ctrl + Q to open the search box, type Node.js,

then choose Blank Node.js Web Application - JavaScript

 In the dialog box that appears, choose Create.

 If you don't see the Blank Node.js Web Application project template, you must add the

Node.js development workload.

 Visual Studio creates the new solution and opens your project.

55

Create a Node.js and React app in Visual Studio

Add npm packages

This app requires a number of npmmodules

to run correctly.

• react

• react-dom

• express

• path

• ts-loader

• typescript

• webpack

• webpack-cli

56

Create a Node.js and React app in Visual Studio

Add npm packages

1. In Solution Explorer (right pane), right-click the npm node in the project and

choose Install New npm Packages. In the Install New npm Packages dialog box,

you can choose to install the most current package version or specify a version.

2. In the Install New npm Packages dialog box, search for the react package, and

select Install Package to install it.

57

Create a Node.js and React app in Visual Studio

When installed, the package appears under the npm node.

 The project's package.json file is updated with the

new package information including the package version.

 Instead of using the UI to search for and add the

rest of the packages one at a time, paste the

following code into package.json.

To do this, add a dependencies section with this code:

58

CHOOSING A SPA FRAMEWORK

 When considering which JavaScript framework will work best to support your SPA, keep in
mind the following considerations:

◦ Is your team familiar with the framework and its dependencies (including TypeScript in some
cases)?

◦ How opinionated is the framework, and do you agree with its default way of doing things?

◦ Does it (or a companion library) include all of the features your app requires?

◦ Is it well documented?

◦ How active is its community? Are new projects being built with it?

◦ How active is its core team? Are issues being resolved and new versions shipped regularly?

 JavaScript frameworks continue to evolve with breakneck speed. Use the considerations listed
above to help mitigate the risk of choosing a framework you'll later regret being dependent
upon

59

Discussion Exercise

1. Write about the State Management Strategies.

2. What is Session State? Show with an example to manage session state in

ASP.NET Core.

3. Show the difference between TempData and Using HttpContext with suitable

example.

4. How do you manage to handle state with client side strategies?

60

Unit 8

BASIC CONCEPTS ON ASP.NET CORE SECURITY

1

BASIC CONCEPTS ON ASP.NET CORE SECURITY

 This Unit shows how to add users to an ASP.NET Core application by

adding authentication. With authentication, users can register and log in

to your app using an email and password. Whenever you add

authentication to an app, you inevitably find you want to be able to

restrict what some users can do. The process of determining whether a

user can perform a given action on your app is called authorization.

 The two concepts are often used together, but they’re definitely distinct:

a. Authentication—The process of determining who made a request

b. Authorization—The process of determining whether the requested action

is allowed

2

Authorization in ASP.NET Core

 The ASP.NET Core framework has authorization built in, so you can use it anywhere in your
app, but it’s most common to apply authorization as part of MVC. For both traditional web
apps and web APIs, users execute actions on your controllers. Authorization occurs before
these actions execute, as shown in figure 1. This lets you use different authorization
requirements for different action methods. As you can see in figure, authorization occurs
as part of MvcMiddleware, after AuthenticationMiddewarehas authenticated the request.

 Authorization, is checking whether a particular user has permission to execute an action.
In ASP.NET Core, you’d achieve this by checking whether a user has a particular claim.

 A request is made to the URL /recipe/index. MvcMiddleware.The authentication
middleware deserializes the ClaimsPrincipal from the encrypted cookie. The authorize
filter runs after routing but before model binding or validation. If authorization is
successful, the action method executes and generates a response as normal. If
authorization fails, the authorize filter returns an error to the user, and the action is not
executed.

3

4

Static file
middleware

Authentication
middleware

A request is made
to the URL/receipe/index

The authentication middlware
deseralizes the Claims Principal
from the encrypted cookie.

The authorize filter runs
after routing but before
model binding or validation.

If authorization is successful,
the action method exeuctes
and generates a response
as normal.

MvcMiddleware

If authorization is fails,
the authorize filter returns an
error to the user, and the action
is not executed.

Authorize filter

Index
action method

Index view

Authorization in ASP.NET Core

 There’s an even more basic level of authorization that you haven’t

considered yet— only allowing authenticated users to execute an

action. There are only two possibilities:

 The user is authenticated- The action executes as normal.

 The user is unauthenticated - The user can’t execute the action.

 You can achieve this basic level of authorization by using the [Authorize]

attribute. You can apply this attribute to your actions, to restrict them to

authenticated (logged-in) users only. If an unauthenticated user tries to

execute an action protected with the [Authorize] attribute in this way,

they’ll be redirected to the login page.

5

Authorization in ASP.NET Core

6

ASP.NET Core Identity

 ASP.NET Core Identity adds user interface (UI) login functionality to ASP.NET Core
web apps and manages users, passwords, profile data, roles, claims, tokens, email
confirmation, and more.

 Users can create an account with the login information stored in Identity

Create a Web app with authentication

 Create an ASP.NET Core Web Application project with Individual User Accounts.

◦ In Visual Studio, Select File > New > Project.

◦ Select ASP.NET Core Web Application. Name the project WebApp1 to have the
same namespace as the project download. Click OK.

◦ Select an ASP.NET Core Web Application, then select Change Authentication.

◦ Select Individual User Accounts and click OK.

7

ASP.NET Core Identity

 The generated project provides ASP.NET Core Identity as a Razor Class
Library. The Identity Razor Class Library exposes endpoints with
the Identity area.

 For example:

◦ /Identity/Account/Login

◦ /Identity/Account/Logout

◦ /Identity/Account/Manage

Apply migrations

 Apply the migrations to initialize the database and Run the following
command in the PackageManager Console (PMC):

 PM> Update-Database
8

ASP.NET Core Identity

Test Register and Login

 Run the app and register a user.

Depending on your screen size, you might

need to select the navigation toggle button

to see the Register andLogin links.

View the Identity database

 From the View menu, select

 SQL Server Object Explorer

Navigate to (localdb)MSSQLLocalDB

(SQL Server 13). Right-click on

dbo.AspNetUsers > View Data:

9

ADDING AUTHENTICATION TO APPS AND IDENTITY
SERVICE CONFIGURATIONS

 Services are added in ConfigureServices.

 The typical pattern is to call all the Add{Service} methods, and

then call all the services.Configure{Service} methods.
public void ConfigureServices(IServiceCollection services)

{

services.AddDbContext<ApplicationDbContext>(options =>

// options.UseSqlite(

options.UseSqlServer(

Configuration.GetConnectionString("DefaultConnection")));

services.AddDefaultIdentity<IdentityUser>(

options=>options.SignIn.RequireConfirmedAccount = true)

.AddEntityFrameworkStores<ApplicationDbContext>();
10

services.AddRazorPages();

services.Configure<IdentityOptions>(options =>

{

// Password settings.

options.Password.RequireDigit = true;

options.Password.RequireLowercase = true;

options.Password.RequireNonAlphanumeric = true;

options.Password.RequireUppercase = true;

options.Password.RequiredLength = 6;

options.Password.RequiredUniqueChars = 1;

// Lockout settings.

options.Lockout.DefaultLockoutTimeSpan = TimeSpan.FromMinutes(5);

options.Lockout.MaxFailedAccessAttempts = 5;

options.Lockout.AllowedForNewUsers = true;

11

// User settings.

options.User.AllowedUserNameCharacters =

"abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ0123456789-._@+";

options.User.RequireUniqueEmail = false;

});

services.ConfigureApplicationCookie(options =>

{

// Cookie settings

options.Cookie.HttpOnly = true;

options.ExpireTimeSpan = TimeSpan.FromMinutes(5);

options.LoginPath = "/Identity/Account/Login";

options.AccessDeniedPath = "/Identity/Account/AccessDenied";

options.SlidingExpiration = true;

});

}

12

 The preceding highlighted code configures Identity with default

option values. Services are made available to the app

through dependency injection.

 The template-generated app doesn't use authorization.

 app.UseAuthorization is included to ensure it's added in the

correct order should the app add authorization.

 UseRouting, UseAuthentication, UseAuthorization,

and UseEndpoints must be called in the order shown in the

preceding code.

13

public void Configure(IApplicationBuilder app, IWebHostEnvironment env) {

if (env.IsDevelopment()) {

app.UseDeveloperExceptionPage();

app.UseDatabaseErrorPage();

}

else {

app.UseExceptionHandler("/Error");

app.UseHsts();

}

app.UseHttpsRedirection();

app.UseStaticFiles();

app.UseRouting();

app.UseAuthentication();

app.UseAuthorization();

app.UseEndpoints(endpoints =>

{

endpoints.MapRazorPages();

});

}
14

AUTHORIZATION: ROLES, CLAIMS AND POLICIES,
SECURING CONTROLLERS AND ACTION METHODS

 When an identity is created it may belong to one or more roles. For example,

Admin1 may belong to the Administrator and User roles whilst User1 may only

belong to the User role. How these roles are created and managed depends on

the backing store of the authorization process. Roles are exposed to the

developer through the IsInRole method on the ClaimsPrincipal class.

Roles

 Role-based authorization checks are declarative—the developer embeds them

within their code, against a controller or an action within a controller, specifying

roles which the current user must be a member of to access the requested

resource.
15

Roles

 For example, the following code limits access to any actions on the

AdministrationController to users who are a member of

the Administrator role:
[Authorize(Roles = "Administrator")]

public class AdministrationController : Controller{}

 You can specify multiple roles as a comma separated list:
[Authorize(Roles = "HRManager,Finance")]

public class Salary Controller : Controller {}

 This controller would be only accessible by users who are members of

the HRManager role or the Finance role.

16

Roles

 If you apply multiple attributes then an accessing user must be a

member of all the roles specified; the following sample requires

that a user must be a member of both the PowerUser and

ControlPanelUser role.

[Authorize(Roles = "PowerUser")]

[Authorize(Roles = "ControlPanelUser")]

public class ControlPanelController : Controller

{

}

17

Roles

◦ You can further limit access by applying additional role authorization
attributes at the action level:

[Authorize(Roles = "Administrator, PowerUser")]

public class ControlPanelController : Controller {

public ActionResult SetTime()

{

}

[Authorize(Roles = "Administrator")]

Public ActionResult ShutDown()

{

}

}
18

Policy based Role Checks

 Role requirements can also be expressed using the new Policy syntax,

where a developer registers a policy at startup as part of the Authorization

service configuration. This normally occurs in ConfigureServices() in

your Startup.cs file.

19

Policy based Role Checks

 Policies are applied using the Policy property on the AuthorizeAttribute
attribute:

[Authorize(Policy = "RequireAdministratorRole")]

public IActionResult Shutdown() {

return View();

}

 If you want to specify multiple allowed roles in a requirement then you can
specify them as parameters to the RequireRole method:

options.AddPolicy("ElevatedRights", policy =>

policy.RequireRole("Administrator", "PowerUser", "BackupAdministrator"));

 This example authorizes users who belong to the Administrator, PowerUser or
BackupAdministrator roles.

20

Add Role services to Identity

 Append AddRoles to add Role services:

public void ConfigureServices(IServiceCollection services)

{

services.AddDbContext<ApplicationDbContext>(options =>

options.UseSqlServer(

Configuration.GetConnectionString("DefaultConnection")));

services.AddDefaultIdentity<IdentityUser>().AddRoles<IdentityRole>()

.AddEntityFrameworkStores<ApplicationDbContext>();

services.AddControllersWithViews();

services.AddRazorPages();

}
21

Claims and Policies

 When an identity is created it may be assigned one or more claims
issued by a trusted party. A claim is a name value pair that represents
what the subject is, not what the subject can do. Claims based
authorization, at its simplest, checks the value of a claim and allows
access to a resource based upon that value.

 For example, if you want access to a night club the authorization
process might be: The door security officer would evaluate the value
of your date of birth claim and whether they trust the issuer (the
driving license authority) before granting you access.

 An identity can contain multiple claims with multiple values and can
contain multiple claims of the same type.

22

Adding claims checks

 First you need to build and register the policy. This takes place as part of the
Authorization service configuration, which normally takes part in
ConfigureServices() in your Startup.cs file.

public void ConfigureServices(IServiceCollection services) {

services.AddControllersWithViews();

services.AddRazorPages();

services.AddAuthorization(options =>

{

options.AddPolicy("EmployeeOnly", policy =>

policy.RequireClaim("EmployeeNumber"));

});

}
23

Adding claims checks

 In this case the EmployeeOnly policy checks for the presence of an EmployeeNumber

claim on the current identity. You then apply the policy using the Policy property on the

AuthorizeAttribute attribute to specify the policy name;

[Authorize(Policy = "EmployeeOnly")]

public IActionResult VacationBalance() { return View(); }

 The AuthorizeAttribute attribute can be applied to an entire controller, in this instance

only identities matching the policy will be allowed access to any Action on the

controller.

[Authorize(Policy = "EmployeeOnly")]

public class VacationController:Controller {

public ActionResult VacationBalance() { }

}
24

Policies

 If you apply multiple policies to a controller or action, then all policies must pass before

access is granted. For example:

[Authorize(Policy = "EmployeeOnly")]

public class SalaryController : Controller{

public ActionResult Payslip()

{

}

[Authorize(Policy = "HumanResources")]

public ActionResult UpdateSalary()

{

}

}

25

Policy-based authorization in ASP.NET Core
 Underneath the covers, role-based authorization and claims-basedauthorization use a

requirement, a requirement handler, and a pre-configured policy.

 An authorization policy consists of one or more requirements. It's registered as part of the
authorization service configuration, in the Startup.ConfigureServicesmethod:

public void ConfigureServices(IServiceCollection services) {

services.AddControllersWithViews();

services.AddRazorPages();

services.AddAuthorization(options =>

{

options.AddPolicy("AtLeast21", policy =>

policy.Requirements.Add(newMinimumAgeRequirement(21)));

});

}

26

Apply policies to MVC controllers

 If you're using Razor Pages, see Apply policies to Razor Pages in this

document.

 Policies are applied to controllers by using the [Authorize] attribute with

the policy name. For example:

using Microsoft.AspNetCore.Authorization;

Using Microsoft.AspNetCore.Mvc;

[Authorize(Policy = "AtLeast21")]

public class AlcoholPurchaseController : Controller {

public IActionResult Index() => View();

}

27

Apply policies to Razor Pages

 Policies are applied to Razor Pages by using the [Authorize] attribute with

the policy name. For example:

using Microsoft.AspNetCore.Authorization;

using Microsoft.AspNetCore.Mvc.RazorPages;

[Authorize(Policy = "AtLeast21")]

public class AlcoholPurchaseModel : PageModel

{

}

 Policies cannot be applied at the Razor Page handler level, they must be

applied to the Page.Policies can be applied to Razor Pages by using an

authorization convention.
28

Securing Action Method in Controller

 Let’s assume that the About page is a secure page and only authenticated

users should be able to access it. We just have to decorate the About

action method in the Home controller with an[Authorize] attribute:

[Authorize]

public IActionResult About() {

ViewData["Message"] = "This is my about page";

return View();

}

 Making the preceding change will redirect user to the log-in page when

user tries to access the log-in page without logging in to the application:

29

Securing Action Method in Controller

 Making the preceding change will redirect the user to the log-in page

when the user tries to access the log-in page without logging in to the

application:

30

Unit 9

HOSTING AND DEPLOYING ASP.NET CORE
APPLICATION

1

HOSTING AND DEPLOYING ASP.NET CORE APPLICATION

 Once you successfully developed your web application, you may require to host the

application to the server so that other people can access it. The process of

deploying/installing an application into the server is called "Hosting".

Web Server

 A web server is a process for hosting web applications, which responds to HTTP

requests and delivers contents and services. A web server allows an application to

process messages that arrive through specific TCP ports (by default). Default port for

HTTP traffic is 80, and the one for HTTPS is 443.

 When you visit a website in your browser, you don’t typically specify the port number

unless the web server is configured to receive traffic on ports other than the default.

 Some of the web servers that we can use to host ASP.NET Core are: Microsoft IIS,

Apache, NGINX.
2

IIS web server

 The IIS web server comes from the Microsoft stable and runs only on the

Microsoft Windows operating system. It is actually not free, since it comes as

a part of the Windows operating system. You might feel comfortable with IIS

if you have already used the Windows OS ecosystem. It also comes with the

support of the .NET framework which was released by Microsoft and support

services for IIS are provided directly by Microsoft.

Advantages of IIS

 Has the support of Microsoft.

 You can have access to the .NET framework along with ASPX scripts.

 Can be easily integrated with other Microsoft services like ASP, MS SQL etc.

3

Apache web server

 Apache is an open source web server which was developed and maintained Apache
Software Foundation. It is a result of the collaborative efforts which was aimed at
creating a robust and secure commercial grade web server which adhered to all the
HTTP standards.

 It has been the market leader since it entered the web server market in 1995 and
remains the web server of choice for its ability to function across multiple platforms.

 Apache is equally efficient on almost every operating system but finds can be found to
be in maximum use when combined with Linux.

Advantages of Apache

◦ As it open source, so there are no licensing fees.

◦ It is flexible, meaning that you can choose the modules you want.

◦ Has a high level of security.

◦ Strong user community to provide backend support.

◦ Runs equally well on UNIX, Linux, MacOS, Windows.
4

NGINX

 NGINX is a robust web server which was developed by Russian developer Igor Sysoev. It
is a free open-source HTTP server which can be used as a mail proxy, reverse proxy
server when required. Most importantly, it can take care of a huge number of
concurrent users with minimal resources in an efficient manner. NGINX, is particularly
of great help when the situation of handling massive web traffic arises.

 NGINX has a lightweight architecture and is highly efficient. This is probably the only
web server which can handle huge traffic with very limited hardware resources. NGINX
acts as a sort of shock absorber which protects Apache servers when faced with
security vulnerabilities and sudden traffic spikes.

Advantages of NGINX

◦ Open source.

◦ A high speed web server which can be used as a reverse-proxy server.

◦ Can be used better in a virtual private server environment.

5

HOSTING MODELS IN ASP.NET CORE

 There are 2 types of hosting models in ASP.NET Core:

◦ Out-of-process Hosting

◦ In-process Hosting

 Before ASP.Net Core 2.2 we have only one hosting model, which is Out-of-process
but after due to the performance we have In Process Hosting Model in 2.2+
versions.

Out-of-process Hosting Model

 In Out-of-process hosting models, we can either use the Kestrel server directly as a
user request facing server or we can deploy the app into IIS which will act as a
proxy server and sends requests to the internal Kestrel server. In this type of
hosting model, we have two options:

◦ Using Kestrel

◦ Using Proxy Server
6

Out-of-process Hosting Model

Using Kestrel

 Kestrel is a cross-platform web server for ASP.NET Core. Kestrel is the webserver that's

included by default in ASP.NET Core project templates.

 Kestrel itself acts as edge server which directly server user requests. It means that we

can only use the Kestrel server for our application.

7

Internate ASP.NET Core Application

Kestrel

Http

Out-of-process Hosting Model

Using a Proxy Server

 Due to limitations of the Kestrel server, we cannot use this in all the apps. In such cases,

we have to use powerful servers like IIS, NGINX or Apache. So, in that case, this server

acts as a reserve proxy server which redirects every request to the internal Kestrel sever

where our app is running. Here, two servers are running. One is IIS and another is

Kestrel.

 This model is a default model for all the applications implemented before .NET Core 2.2.

But there are some of the limitations of using this type such as performance slowness.

8

Internate ASP.NET Core Module

IIS

Http
Application Code

ASP.NET Core Application

Http Kestrel Http
Context

In-process Hosting Model

 After the release of .NET Core 2.2, it introduced a new type of hosting which is called

In-process hosting. In this type, only one server is used for hosting like IIS, Nginx or

Linux. It means that the App is directly hosted inside of IIS. No Kestrel server is being

used. IIS HTTP Server (IISHttpServer) is used instead of the Kestrel server to host apps

in IIS directly. ASP.NET Core 3.1 onwards In-process hosting model is used as a default

model whenever you create a new application using an existing template.

9

Internet

IIS

IISHttpServer

HTTP

Application

Let’s see different types of hosting models

 Now let's see how to check which hosting model is being used.

 Run the application on the IISExpress server, then open the browsers network tab and

check for the first call. Under the server section, you will able to see it showing

Microsoft IIS.

10

Let’s see different types of hosting models

 Stop the app and open the command prompt and run the same application using

dotnet CLI using the command dotnet run. Now it will host app on

http://localhost:5000.

11

Let’s see different types of hosting models

 Browse the URL and open the network tab to see the server attribute as Kestrel.

12

DEPLOY .NET CORE APPLICATION ON LINUX

 When Microsoft launched their .Net Core framework the key selling point was it is a
cross-platform framework, which means that now we can host our .Net application not
only on Windows but on Linux too.

 Let’s see how we can deploy .Net core application on Linux.

Step 1 - Publish your .Net Core application

 First, create a .Net core application on VS; you can make an MVC project or Web API
project and if you already have an existing project, then open it.

1. Right Click on your project

2. Click on publish

3. Now create a new publish profile, and browse the folder where you want to publish
your project dll

4. Click on publish so it will create your dll in the folder
13

DEPLOY .NET CORE APPLICATION ON LINUX
Step 2 - Install required .Net Module on Linux

 Now we have our web application dll and now we need to host it on the Linux environment. First, we
need to understand how the deployment works in Linux. .Net applications run on Kestrel servers and we
run Apache or Nginx server in Linux environments, which acts as a proxy server and handles the traffic
from outside the machine and redirects it to the Kestrel server so we will have Apache or Nginx server as
the middle layer.

 Here we will use Apache as a proxy server.

 First, we need to install the .Net core module in our Linux environment. For that run the following
commands

sudo apt-get update

sudo apt-get install apt-transport-https

sudo apt-get update

sudo apt-get install dotnet-sdk-3.1

sudo apt-get install dotnet-runtime-3.1

sudo apt-get install aspnetcore-runtime-3.1

14

DEPLOY .NET CORE APPLICATION ON LINUX

Step 3 - Install and configure Apache Server

 So now we have all the required .Net packages. I have installed an
additional package so if you are running a different project it will help.

 Now install the Apache server,
sudo apt-get install apache2

sudo a2enmod proxy proxy_httpproxy_htmlproxy_wstunnel

sudo a2enmod rewrite

 Now we need to make a conf file to set up our proxy on Apache. Create
the following file:

sudo nano /etc/apache2/conf-enabled/netcore.conf

 Now copy the following configuration in that file,
15

DEPLOY .NET CORE APPLICATION ON LINUX
Now copy the following configuration in that file,

<VirtualHost *:80>

ServerName www.DOMAIN.COM

ProxyPreserveHost On

ProxyPass / http://127.0.0.1:5000/

ProxyPassReverse / http://127.0.0.1:5000/

RewriteEngine on

RewriteCond %{HTTP:UPGRADE} ^WebSocket$ [NC]

RewriteCond %{HTTP:CONNECTION} Upgrade$ [NC]

RewriteRule /(.*) ws://127.0.0.1:5000/$1 [P]

ErrorLog /var/log/apache2/netcore-error.log

CustomLog /var/log/apache2/netcore-access.log common

</VirtualHost>
16

DEPLOY .NET CORE APPLICATION ON LINUX

<VirtualHost *:80>

This tag defines the IP and port it will bind Apache so we will access our application from

outside our Linux environment through this Ip:Port.

Now restart the Apache server,

• sudo service apache2 restart

• sudoapachectlconfigtest

17

DEPLOY .NET CORE APPLICATION ON LINUX

Step 4 - Configure and Start Service

 Move your dll to the defined path with the below command.

"sudo cp -a ~/release/ /var/netcore/"

 Create a service file for our .Net application

"sudo nano /etc/systemd/system/ServiceFile.service"

 Copy the following configuration in that file and it will run our application,

18

DEPLOY .NET CORE APPLICATION ON LINUX

[Unit]

Description=ASP .NET Web Application

[Service]

WorkingDirectory=/var/netcore

ExecStart=/usr/bin/dotnet /var/netcore/Application.dll

Restart=always

RestartSec=10

SyslogIdentifier=netcore-demo

User=www-data

Environment=ASPNETCORE_ENVIRONMENT=Production

[Install]

WantedBy=multi-user.target
19

DEPLOY .NET CORE APPLICATION ON LINUX

 ExecStart=/usr/bin/dotnet /var/netcore/Application.dll in this line replace

Application.dll with your dll name that you want to run.

 Now start the service. Instead of the service name in the below commands use the

name of the file made above,

◦ sudosystemctl enable {Service Name}

◦ sudosystemctl start {Service Name}

 Now your proxy server and kestrel server is running and you can access your

application through any ip with port 80.

 To redeploy the code your need to replace the dll and stop and start your service again

through the following commands

◦ sudosystemctl stop {Service Name}

◦ sudosystemctl start {Service Name}

20

ASP.NET CORE MODULE

 The ASP.NET Core Module is a native IIS module that plugs into the IIS pipeline to
either:

◦ Host an ASP.NET Core app inside of the IIS worker process (w3wp.exe), called the in-
process hosting model.

◦ Forward web requests to a backend ASP.NET Core app running the Kestrel server,
called the out-of-process hosting model.

 Supported Windows versions

◦ Windows 7 or later

◦ Windows Server 2012 R2 or later

 When hosting in-process, the module uses an in-process server implementation for IIS,
called IIS HTTP Server (IISHttpServer).

 When hosting out-of-process, the module only works with Kestrel. The module doesn't
function with HTTP.sys.

21

ASP.NET CORE MODULE

In-process hosting model

 ASP.NET Core apps default to the in-process hosting model.

 The following characteristics apply when hosting in-process:

1. IIS HTTP Server (IISHttpServer) is used instead of Kestrel server. For in-process,

CreateDefaultBuilder calls UseIIS to:

 Register the IISHttpServer.

 Configure the port and base path the server should listen on when running

behind the ASP.NET Core Module.

 Configure the host to capture startup errors.

22

ASP.NET CORE MODULE

2. The requestTimeout attribute doesn't apply to in-process hosting.

3. Sharing an app pool among apps isn't supported. Use one app pool per app.

4. When using Web Deploy or manually placing an app_offline.htm file in the deployment,

the app might not shut down immediately if there's an open connection. For example, a

websocket connection may delay app shut down.

5. The architecture (bitness) of the app and installed runtime (x64 or x86) must match the

architecture of the app pool.

6. Client disconnects are detected. The HttpContext.RequestAborted cancellation token is

cancelled when the client disconnects.

7. In ASP.NET Core 2.2.1 or earlier, GetCurrentDirectory returns the worker directory of the

process started by IIS rather than the app's directory (for example,

C:\Windows\System32\inetsrv for w3wp.exe).
23

ASP.NET CORE MODULE
Out-of-process hosting model

 To configure an app for out-of-process hosting, set the value of the <AspNetCoreHostingModel>
property to OutOfProcess in the project file (.csproj):

XMLCopy

<PropertyGroup>

<AspNetCoreHostingModel>OutOfProcess</AspNetCoreHostingModel>

</PropertyGroup>

 In-process hosting is set with InProcess, which is the default value.

 The value of <AspNetCoreHostingModel> is case insensitive, so inprocess and outofprocess are valid
values.

 Kestrel server is used instead of IIS HTTP Server (IISHttpServer).

 For out-of-process, CreateDefaultBuilder calls UseIISIntegration to:

◦ Configure the port and base path the server should listen on when running behind the ASP.NET Core
Module.

◦ Configure the host to capture startup errors.

24

DOCKER AND CONTAINERIZATION

 .NET Core can easily run in a Docker container. Containers provide a lightweight way to
isolate your application from the rest of the host system, sharing just the kernel, and
using resources given to your application. The Docker client has a CLI that you can use
to manage images and containers.

 An image is an ordered collection of filesystem changes that form the basis of a
container. The image doesn't have a state and is read-only. Much the time an image is
based on another image, but with some customization. For example, when you create
an new image for your application, you would base it on an existing image that already
contains the .NET Core runtime.

 Because containers are created from images, images have a set of run parameters
(such as a starting executable) that run when the container starts.

 Role requirements can also be expressed using the new Policy syntax, where a
developer registers a policy at startup as part of the Authorization service
configuration. This normally occurs in ConfigureServices() in your Startup.cs file.

25

DOCKER AND CONTAINERIZATION

Containers

 A container is a runnable instance of an image. As you build your image, you deploy your

application and dependencies. Then, multiple containers can be instantiated, each isolated

from one another. Each container instance has its own filesystem, memory, and network

interface.

Registries

 Container registries are a collection of image repositories. You can base your images on a

registry image. You can create containers directly from an image in a registry. The relationship

between Docker containers, images, and registries is an important concept when architecting

and building containerized applications or microservices. This approach greatly shortens the

time between development and deployment.

 Docker has a public registry hosted at the Docker Hub that you can use. .NET Core related

images are listed at the Docker Hub.

26

DOCKER AND CONTAINERIZATION

Dockerfile

 A Dockerfile is a file that defines a set of instructions that creates an image. Each

instruction in the Dockerfile creates a layer in the image. For the most part,

when you rebuild the image, only the layers that have changed are rebuilt. The

Dockerfile can be distributed to others and allows them to recreate a new image

in the same manner you created it. While this allows you to distribute the

instructions on how to create the image, the main way to distribute your image

is to publish it to a registry.

Docker support in Visual Studio

 Docker support is available for ASP.NET projects, ASP.NET Core projects, and

.NET Core and .NET Framework console projects.

27

Adding Docker support

 You can enable Docker support during project creation by selecting Enable

Docker Support when creating a new project, as shown.

28

Adding Docker support

 You can add Docker support to an existing project by selecting Add > Docker Support in

Solution Explorer. The Add > Docker Support and Add > Container Orchestrator Support

commands are located on the right-click menu (or context menu) of the project node

for an ASP.NET Core project in Solution Explorer, as shown.

29

Adding Docker support

 When you add or enable Docker support,

Visual Studio adds the following to the project:

◦ a Dockerfile file

◦ a .dockerignore file

◦ a NuGet package reference to the

Microsoft.VisualStudio.Azure.Containers.Tools.Targets

 The solution looks like this once

you add Docker support:

30

DEPLOY YOUR ASP.NET CORE APP TO AZURE

Publish to Azure App Service

 https://docs.microsoft.com/en-us/visualstudio/get-

started/csharp/tutorial-aspnet-core-ef-step-05?view=vs-2019

31

Discussion Exercise

1. What is a web server? List down the of Web Server you can find to host

ASP.NET Core Application.

2. Explain about the Hosting Models in ASP.NET Core

3. What is IIS? How can you deploy your ASP.NET Core Application on IIS

Server?

4. Write down the details steps to host ASP.NET Application on Linux.

5. What is ASP.NET Core Module? Explain.

6. What is Docker and Containers.

7. How do you deploy ASP.NET Core app to Azure?

32

